34 resultados para Mineral research

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

This population-based study documented β-blocker use in 59/569 cases with incident fracture and 112/775 controls. OR for fracture associated with β-blocker use was 0.68 (95%CI, 0.49–0.96). β-Blockers were associated with higher BMD at the total hip (2.5%) and UD forearm (3.6%) after adjusting for age, anthropometry, and thiazide use. β-Blocker use is associated with reduced fracture risk and higher BMD.

Introduction:
Animal data suggests that bone formation is under β-adrenergic control and that β-blockers stimulate bone formation and/or inhibit bone resorption.

Materials and Methods: We evaluated the association between β-blocker use, bone mineral density (BMD), and fracture risk in a population-based study in Geelong, a southeastern Australian city with a single teaching hospital and two radiological centers providing complete fracture ascertainment for the region. β-Blocker use was documented for 569 women with radiologically confirmed incident fractures and 775 controls without incident fracture. Medication use and lifestyle factors were documented by questionnaire.

Results:
Odds ratio for fracture associated with β-blocker use was 0.68 (95% CI, 0.49–0.96) for any fracture. Adjusting for age, weight, medications, and lifestyle factors had little effect on the odds ratio. β-Blocker use was associated with a higher BMD at the total hip (2.5%, p = 0.03) and ultradistal forearm (3.6%, p = 0.04) after adjustment for age, anthropometry, and thiazide use.

Conclusion:
β-Blockers are associated with a reduction in fracture risk and higher BMD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to determine if DNA polymorphism within runt-related gene 2 (RUNX2)/core binding factor A1 (CBFA1) is related to bone mineral density (BMD). RUNX2 contains a glutamine-alanine repeat where mutations causing cleidocranial dysplasia (CCD) have been observed. Two common variants were detected within the alanine repeat: an 18-bp deletion and a synonymous alanine codon polymorphism with alleles GCA and GCG (noted as A and G alleles, respectively). In addition, rare mutations that may be related to low BMD were observed within the glutamine repeat. In 495 randomly selected women of the Geelong Osteoporosis Study (GOS), the A allele was associated with higher BMD at all sites tested. The effect was maximal at the ultradistal (UD) radius (p = 0.001). In a separate fracture study, the A allele was significantly protective against Colles' fracture in elderly women but not spine and hip fracture. The A allele was associated with increased BMD and was protective against a common form of osteoporotic fracture, suggesting that RUNX2 variants may be related to genetic effects on BMD and osteoporosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this 2-year randomized controlled study of 167 men >50 years of age, supplementation with calcium-vitamin D3-fortified milk providing an additional 1000 mg of calcium and 800 IU of vitamin D3 per day was effective for suppressing PTH and stopping or slowing bone loss at several clinically important skeletal sites at risk for fracture.

Introduction: Low dietary calcium and inadequate vitamin D stores have long been implicated in age-related bone loss and osteoporosis. The aim of this study was to assess the effects of calcium and vitamin D3 fortified milk on BMD in community living men >50 years of age.

Materials and Methods: This was a 2-year randomized controlled study in which 167 men (mean age ± SD, 61.9 ± 7.7 years) were assigned to receive either 400 ml/day of reduced fat (1%) ultra-high temperature (UHT) milk containing 1000 mg of calcium plus 800 IU of vitamin D3 or to a control group receiving no additional milk. Primary endpoints were changes in BMD, serum 25(OH)D, and PTH.

Results:
One hundred forty-nine men completed the study. Baseline characteristics between the groups were not different; mean dietary calcium and serum 25(OH)D levels were 941 ± 387 mg/day and 77 ± 23 nM, respectively. After 2 years, the mean percent change in BMD was 0.9-1.6% less in the milk supplementation compared with control group at the femoral neck, total hip, and ultradistal radius (range, p < 0.08 to p < 0.001 after adjusting for covariates). There was a greater increase in lumbar spine BMD in the milk supplementation group after 12 and 18 months (0.8-1.0%, p ≤ 0.05), but the between-group difference was not significant after 2 years (0.7%; 95% CI, −0.3, 1.7). Serum 25(OH)D increased and PTH decreased in the milk supplementation relative to control group after the first year (31% and −18%, respectively; both p < 0.001), and these differences remained after 2 years. Body weight remained unchanged in both groups at the completion of the study.

Conclusions: Supplementing the diet of men >50 years of age with reduced-fat calcium- and vitamin D3-enriched milk may represent a simple, nutritionally sound and cost-effective strategy to reduce age-related bone loss at several skeletal sites at risk for fracture in the elderly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Combining exercise with calcium supplementation may produce additive or multiplicative effects at loaded sites; thus, we conducted a single blind, prospective, randomized controlled study in pre- and early-pubertal girls to test the following hypotheses. (1) At the loaded sites, exercise and calcium will produce greater benefits than exercise or calcium alone. (2) At non-loaded sites, exercise will have no benefit, whereas calcium with or without exercise will increase bone mass over that in exercise alone or no intervention. Sixty-six girls aged 8.8 ± 0.1 years were randomly assigned to one of four study groups: moderate-impact exercise with or without calcium or low-impact exercise with or without calcium. All participants exercised for 20 minutes, three times a week and received Ca-fortified (434 ± 19 mg/day) or non-fortified foods for 8.5 months. Analysis of covariance (ANCOVA) was used to determine interaction and main effects for exercise and calcium on bone mass after adjusting for baseline bone mineral content and growth in limb lengths. An exercise-calcium interaction was detected at the femur (7.1%, p < 0.05). In contrast, there was no exercise-calcium interaction detected at the tibia-fibula; however, there was a main effect of exercise: bone mineral content increased 3% more in the exercise than non-exercise groups (p < 0.05). Bone mineral content increased 2-4% more in the calcium-supplemented groups than the non-supplemented groups at the humerus (12.0% vs. 9.8%, respectively, p < 0.09) and radius-ulna (12.6% vs. 8.6%, respectively, p < 0.01). In conclusion, greater gains in bone mass at loaded sites may be achieved when short bouts of moderate exercise are combined with increased dietary calcium, the former conferring region-specific effects and the latter producing generalized effects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We examined the combined effects of exercise and calcium on BMC accrual in pre- and early-pubertal boys. Exercise and calcium together resulted in a 2% greater increase in femur BMC than either factor alone and a 3% greater increase in BMC at the tibia–fibula compared with the placebo group. Increasing dietary calcium seems to be important for optimizing the osteogenic effects of exercise.

Introduction: Understanding the relationship between exercise and calcium during growth is important given that the greatest benefits derived from these factors are achieved during the first two decades of life. We conducted a blinded randomized-controlled exercise–calcium intervention in pre- and early-pubertal boys to test the following hypotheses. (1) At the loaded sites (femur and tibia–fibula), exercise and calcium will produce greater skeletal benefits than either exercise or calcium alone. (2) At nonloaded sites (humerus and radius–ulna), there will be an effect of calcium supplementation.

Materials and Methods:
Eighty-eight pre- and early-pubertal boys were randomly assigned to one of four study groups: moderate impact exercise with or without calcium (Ca) (Ex + Ca and Ex + placebo, respectively) or low impact exercise with or without Ca (No-Ex + Ca and No-Ex + Placebo, respectively). The intervention involved 20 minutes of either moderate- or low-impact exercise performed three times a week and/or the addition of Ca-fortified foods using milk minerals (392 ± 29 mg/day) or nonfortified foods over 8.5 months. Analysis of covariance was used to determine the main and combined effects of exercise and calcium on BMC after adjusting for baseline BMC.

Results: At baseline, no differences were reported between the groups for height, weight, BMC, or bone length. The increase in femur BMC in the Ex + Ca group was 2% greater than the increase in the Ex + placebo, No-Ex + Ca, or No-Ex + Placebo groups (all p < 0.03). At the tibia–fibula, the increase in BMC in the Ex + Ca group was 3% greater than the No-Ex + placebo group (p < 0.02) and 2% greater than the Ex + Placebo and the No-Ex + Ca groups (not significant). No effect of any group was detected at the humerus, ulna–radius, or lumbar spine for BMC, height, bone area, or volume.

Conclusions:
In this group of normally active boys with adequate calcium intakes, additional exercise and calcium supplementation resulted in a 2–3% greater increase in BMC than controls at the loaded sites. These findings strengthen the evidence base for public health campaigns to address both exercise and dietary changes in children for optimizing the attainment of peak BMC.