68 resultados para MEMS sensors

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Long-term, off-site human monitoring systems are emerging with respect to the skyrocketing expenditures engaged with rehabilitation therapies for neurological diseases. Inertial/magnetic sensor modules are well known as a worthy solution for this problem. Much attention and effort are being paid for minimizing drift problem of angular rates, yet the rest of kinematic measurements (earth’s magnetic field and gravitational orientation) are only themselves capable enough to track movements applying the theory for solving historicalWahbas Problem. Further, these solutions give a closed form solution which makes it mostly suitable for real time Mo-Cap systems. This paper examines the feasibility of some typical solutions of Wahba’s Problem named TRIAD method, Davenport’s q method, Singular Value Decomposition method and QUEST algorithm upon current inertial/magnetic sensor measurements for tracking human arm movements. Further, the theoretical assertions are compared through controlled experiments with both simulated and actual accelerometer and magnetometer measurements.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Micro-electro-mechanical system (MEMS) technology offers sensors with lower cost, smaller size, lower power consumption. In this paper, a kind of low cost motion-sensing system based MEMS sensors is developed. The objective of the design is low cost, small volume and light weight in order to be used in many fields. The constituting principle of the system is described. Algorithms and hardware of the system are researched. And the definition of coordinate, calculation of pose angle, transform of acceleration and calculation of the velocities and displacement of the moving object are presented with corresponding mathematics model and algorithms. The experiments are carried out in principle and results are given. It is proved that the low cost motion-sensing system is effective and correct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new charge neutral 4-amino-1,8-naphthalimide based anion sensors 2 and 3 bind to both acetate and dihydrogenphosphate with 1:1 stoichiometry through hydrogen bonding to both thiourea N–H atoms and in the case of dihydrogenphosphate, the naphthalimide 4 amino N–H group as well. This was clearly established from 1H NMR titration experiments with H2PO4- in DMSO-d6 where a substantial shift in the resonance for the naphthalimide N–H was observed concomitant with the expected migration of the thiourea N–H chemical shifts. The binding constants determined from the titration studies indicate that the new sensors bind H2PO4- more strongly than AcO. Fluorescence titrations with sensor 3 indicate quenching of 59% and 36% upon addition of acetate and dihydrogenphosphate, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a location based power control strategy for disconnected sensory nodes deployed for long term service. Power conservation is of importance particularly when sensors communicate with a mobile robot used for data collection. The proposed algorithm uses estimations from a Robust Extended Kalman Filter (REKF) with RSSI measurements, in implementing a sigmoid function based power control algorithm which essentially approaches a desired power emission trajectory based on carrier-to-interference ratios(CIR) to ensure interferenceless reception. The more realistic modelling we use incorporates physical dynamics between the mobile robot and the sensors together with the wireless propagation parameters between the transmitter and receiver to formulate a sophisticated and effective power control strategy for the exclusive usage of energy critical disconnected nodes in a sensory network increasing their life span.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This mini review highlights the synthesis and photophysical evaluation of anion sensors, for nonaqueous solutions, that have been developed in our laboratories over the last few years. We have focused our research mainly on developing fluorescent photoinduced electron transfer (PET) sensors based on the fluorophore-spacer-anion receptor principle using several anthracene (emitting in the blue) and 1,8-naphthalimide (emitting in the green) fluorophores, with the aim of targeting biologically and industrially relevant anions such as acetates, phosphate and amino acids, as well as halides such as fluoride. The receptors and the fluorophore are separated by a short methyl or ethyl spacer, where the charge neutral anion receptors are either aliphatic or aromatic urea (or thiourea) moieties. For these, the anion recognition is through hydrogen bonding, yielding anion:receptor complexes. Such bonding gives rise to enhanced reduction potential in the receptor moieties which causes enhancement in the rate of PET quenching of the fluorophore excited state from the anion:receptor moiety. This design can be further elaborated on by incorporating either two fluorophores, or urea/thiourea receptors into the sensor structures, using anthracene as a fluorophore. For the latter design, the sensors were designed to achieve sensing of bis-anions, such as di-carboxylates or pyrophosphate, where the anion bridged the anthracene moiety. In the case of the naphthalimide based mono-receptor based PET sensors, it was discovered that in DMSO the sensors were also susceptible to deprotonation by anions such as F− at high concentrations. This led to substantial changes in the absorption spectra of these sensors, where the solution changed colour from yellow/green to deep blue, which was clearly visible to the naked eye. Hence, some of the examples presented can act as dual fluorescent-colorimetric sensors for anions. Further investigations into this phenomenon led to the development of simple colorimetric sensors for fluorides, which upon exposure to air, were shown to fix carbon dioxide as bicarbonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review article focuses primarily on the work carried in our laboratories over the last few years using luminescent and colorimetric sensors, where the anion recognition occurs through hydrogen bonding in organic or aqueous solvents. This review begins with the story of the discovery of fluorescent photoinduced electron transfer (PET) sensors for anions using charged neutral urea or thiourea receptors where both fluorescent and NMR spectroscopic methods monitored anion recognition. This work led to the development of dual luminescent and colorimetric anion sensors based on the use of the ICT based naphthalimide chromophore, where ions such as fluoride gave rise to changes in both the fluorescence and the absorption spectra of the sensors, but at different concentrations. Here, the former changes were due to hydrogen bonding interactions, whereas the latter was due to the deprotonation of acidic protons, giving rise to the formation of the bifluoride anion (HF2−). Modification of the 4-amino-l,8-naphthalimide moiety has facilitated the formation of colorimetric anion sensors that work both in organic or aqueous solutions. Such charge neutral receptor motifs have also been incorporated into organic scaffolds with norbomyl and calixarene backbones, which have enabled us to produce anion directed self-assembled structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Focusing here on the effects of zinc doping in a nanocrystalline matrix of tin dioxide, inverse opal prototype sensors are presented and extensively studied as superior candidates for gas sensing applications. Courtesy of factors including controlled porosity, enhanced surface to volume ratio and homogeneous dispersion of species in the crystalline lattice assured by the sol–gel technique, prototype sensors were prepared with high dopant ratios in a range of new compositions. Exploiting their high sensitivities to low-gas concentrations at low working temperatures, and thanks to the presented templated sol–gel approach, the prepared sensors open up new frontiers in compositional control over the sensing oxide materials, consequently widening the possibilities available in on-demand gas sensor synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel technique is here presented, based on inverse opal metal oxide structures for the production of high quality macro and meso-porous structures for gas sensing. Taking advantage of a sol-gel templated approach. different mixed semiconducting oxides with high surface area, commonly used in chemical sensing application, were synthesized. In this work we report the
comparison between SnO2 and SnO2:Zn. As witnessed by Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and by Powder x-ray Diffraction (PX RD), highly ordered meso-porous structures were formed with oxide crystalline size never exceeding 20 nm . The filled templates. in form of thick films, were bound to allumina substrate with Pt interdigitated contacts
and Pt heater, through in situ calcination, in order to perform standard electrical characterization. Pollutant gases like CO and NO2 and methanol. as interfering gas, were used for the targeted electrical gas tests. All samples showed low detection limits towards both reducing and oxidizing species in low temperature measurements. Moreover, the addition of high molar percentages of Zn( II) affected the beha viour of electrical response improv ing the se lecti vity of the proposed system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 4-amino-1,8-naphthalimide based chemosensors 2, 4 and 6 show striking green-to-purple colour changes due to the deprotonation of the 4-amino moiety on interaction with strongly basic anions such as F: these colour changes reverse gradually with time due to the fixation of atmospheric CO2 (as HCO3) yielding 1:1 adducts as demonstrated by X-ray crystallography.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide band low actuation capacitive coupling electrostatic RF MEMS switching device is presented in this paper. The device includes a pi-shaped matching architecture containing two switches connected by a high impedance short transmission line. The device can act as a switch for any desired frequency whilst requiring only 12volts for actuation. By optimizing the length and the characteristic impedance of the transmission line, the switch can be tailored for desired frequency bands. The switch is calculated and simulated for Ka to V frequency bands demonstrating excellent improvements of RF characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents design of an electrostatic wide band shunt capacitive coupling RF MEMS switch with low actuation voltage. The key factors of the RF MEMS switch design are the proper scattering parameters, low actuation voltage, and the cost of the fabrication process. An overview of the recent low actuation voltage RFMEMS switches has been presented. These designs still suffer from the complexity of process, lack of reliability, limitation of frequency band, and process cost. RF characteristics of a shunt RF MEMS switches are specified mostly by coupling capacitor in upstate position of the membrane Cu. This capacitor is in trade-off with actuation voltage. In this work, the capacitor is eliminated by using two short high impedance transmission lines, at the input and output of the switch. The simulation results demonstrate an improvement in the RF characteristic of the switch.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new architecture for a high quality tunable MEMS filter that can be used in wireless biomedical signal transceivers. It consists of a π match circuit with two shunt capacitive coupling switches separated by a piece of high impedance short transmission line, and also a series switch placed at the quarter wavelength distance away from the π match circuit. The low actuation voltage and also tunability are important features of the design objective. All portions of the filter can be realized simultaneously. Thus, the filter docs not require any extra steps during its fabrication, and is not costly. The simulation results confirm the good performance of the filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RF MEMS plays an important role in microwave switching. The high performance of RF MEMS shunt such as high bandwidth, low insertion loss, and high isolation have made these switches well suitable for high performing microwave and millimeter wave circuits. This paper presents a RF MEMS shunt capacitive switch for Ka and V band application. This paper investigates the effect of various geometrical parameters on RF characteristics of the switch. The simulation results are presented and discussed.