15 resultados para Lanthanides(III) chelate complexes

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sodium salts of dimethyldithiocarbamate, diethyldithiocarbamate and pyrrolidinedithiocarbamate react with the multiply bonded paramagnetic dirhenium(III,II) complex Re2(μ-O2CCH3)Cl4(μ-dppm)2, 1 (dppm = Ph2PCH2PPh2) in refluxing ethanol to afford the paramagnetic substitution products of the type Re2(η2-S,S)2(μ-S,S)(μ-Cl)2(μ-dppm), where S,S represents the dithiocarbamato ligands [S,S = S2CNMe2, 4(LMe); S2CNEt2, 4(LEt) and S2CN(CH2)4, 4(LPyr)]. These are the first examples of dirhenium complexes that contain bridging dithiocarbamato ligand along with the dppm ligand. These complexes have very similar spectral (UV-Vis, IR, EPR) and electrochemical properties which are also reported. The identity of 4(LEt) has been established by single-crystal X-ray structure determination (Re-Re distance 2.6385 (9) Å) and is shown to have edge-shared bioctahedral structure. The electronic structure and the absorption spectra of the complexes are scrutinized by the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) analyses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The chemiluminescence from four cyclometalated iridium(III) complexes containing an ancillary bathophenanthroline-disulfonate ligand exhibited a wide range of emission colours (green to red), and in some cases intensities that are far greater than the commonly employed benchmark reagent, [Ru(bpy)3](2+). A similar complex incorporating a sulfonated triazolylpyridine-based ligand enabled the emission to be shifted into the blue region of the spectrum, but the responses with this complex were relatively poor. DFT calculations of electronic structure and emission spectra support the experimental findings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Four cationic heteroleptic iridium(III) complexes have been prepared from methyl- or benzyl-substituted chelating imidazolylidene or benzimidazolylidene ligands using a Ag(I) transmetallation protocol. The synthesised iridium(III) complexes were characterised by elemental analysis, (1)H and (13)C NMR spectroscopy and the molecular structures for three complexes were determined by single crystal X-ray diffraction. A combined theoretical and experimental investigation into the spectroscopic and electrochemical properties of the series was performed in order to gain understanding into the factors influencing photoluminescence and electrochemiluminescence efficiency for these complexes, with the results compared with those of similar NHC complexes of iridium and ruthenium. The N^C coordination mode in these complexes is thought to stabilise thermally accessible non-emissive states relative to the case with analogous complexes with C^C coordinated NHC ligands, resulting in low quantum yields. As a result of this and the instability of the oxidised and reduced forms of the complexes, the electrogenerated chemiluminescence intensities for the compounds are also low, despite favourable energetics. These studies provide valuable insights into the factors that must be considered when designing new NHC-based luminescent complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A range of 1,4-substituted 2-pyridyl-N-phenyl triazoles were synthesised and evaluated for their antiproliferative properties against lymph node cancer of the prostate (LNCaP) and bone metastasis of prostate cancer (PC-3) cells. Excellent-to-low IC50 values were determined (5.6-250 μM), and a representative group of 4 ligands were then complexed to iridium(III) giving highly luminescent species. Re-evaluation of these compounds against both cell lines was then undertaken and improved potency (up to 72-fold) was observed, giving IC50 values of 0.36-11 μM for LNCaP and 0.85-5.9 μM for PC-3. Preliminary screens for in vivo toxicity were conducted using a zebrafish model showing a wide range of induced toxicity depending of the compound evaluated. Apoptosis and Caspase-3 levels were also determined and showed no statistical difference between some of the treated specimens and the controls. This study may identify novel therapeutic agents for advanced stage of prostate cancer in humans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(119)Sn, (31)P and (13)C variable temperature NMR spectroscopies have been used to examine the effective coordination spheres in solution of a series of hypervalent organotin(IV) dithiolate compounds RnSnXm(S-S)4-n-m where R = Ph, Me, nBu, tBu; X = Cl, Br; (S-S) = S2CNR'2, S2COR', S2P(OR')2 (R' = Me, Et, iPr) and n = 1, 2, 3; m = 0,1,2. Stereochemical nonrigidity is a common phenomenon found for these hypervalent compounds. On the basis of heteronuclear NMR data and X-ray crystallographic data, dynamic behaviors of these hypervalent compounds have been established. The system of hypervalent organotin(IV) fluoride complexes has also been investigated by variable temperature heteronuclear NMR techniques. A series of monomeric pentacoordinate complexes [RnSnC1mF5-n-m]-(R = Ph, Me, nBu, tBu; n = 2, 3; m - 0, 1, 2, 3) and dimeric complexes [(Me3SnX)F(Me3SnX')]- (X = F, Cl; X' = F, Cl) and hexacoordinate complexes [RnSnClmF6-n.m]2- (R = Ph, Me, nBu; n = 1, 2; m = (X 1, 2, 3,4) are identified in solution. The fluoride is of higer affinite to tin than the chloride. The stereochemistry and dynamic behavior of these complexes in solution has been studied. Fluoride ion may induce phenyl group disproportionation of phenyhin(IV) compounds. It is also found that in pentacoordinate diorganotin complexes, such as [Ph2SnCl2F]- and [Ph2SnClF2]- fluorine can be less apicophilic than chlorine. Studies of stereochemistry and dynamic behavior of bi-functional Lewis acid bis(haloorganosiannes) have also been carried out. The bis(haloorganostannes) exhibit strong chelate ability towards halide, with high selectivity on fluoride, forming heterocyclic chelating rings, the stability of which depend on the ring size. In further exploration of the Lewis acidity of organotin(IV) halides, complexation of organotin(IV) halides with bis(tertiary phosphinc) ligands has been studied by 119Sn and 31P NMR spectroscopy and X-ray crystallography. The phenyl group disproportionation is often observed in the complexation reaction. Furthermore, organotin(IV) clusters such as [(RSn)12O14(OH)6]Cl2-2H2O (R = iPr, nBu) have been successfully prepared by base hydrolysis of RSnCl3. These clusters contain 12 tin atoms in one molecule and the cores of the clusters are dications. Other organotin clusters such as [nBuSn(O)O2CCH3]6 and [(nBuSn(OH)O2PPh2)3][O2PPh2) are readily formed by reaction of the 12-tin-atom cluster with an appropriate acid. The reactivity of and interconversion between organotin(FV) clusters have also been studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparations and characterisations of a range of lanthanoid 4-(R)-substituted (4-Rcinn, R = OH, OMe, NO2, Cl), known to have good anticorrosion properties, are reported. The crystal structure of [Ce(4-OHcinn)3(MeOH)2(H2O)]·MeOH is a polymer, in which the cerium atoms are nonacoordinate, and adjacent cerium atoms are bridged by either two bridging bidentate or two bridging tridentate carboxylate ligands. Each cerium atom also has one monodentate 4-hydroxycinnamate ligand, one aqua ligand, and two methanol ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four new complexes, [PdX(κ2-2-C6R4PPh2)(PPh2Fc)] [X = Br, R = H (1), R = F (2); X = I, R = H (3), R = F (4)], containing ferrocenyldiphenylphosphine (PPh2Fc) have been prepared and fully characterised. The X-ray structures of complexes trans-1, cis-2 and cis-4, and that of a decomposition product of 4, [Pd(κ2-2-C6F4PPh2)(μ-I)(μ-2-C6F4PPh2)PdI(PPh2Fc)] (5), have been determined. These complexes show a distorted square planar geometry about the metal atom, the bite angles of the chelate ligands being about 69°, as expected. The cis/trans ratio of 1–4 in solution is strongly dependent on solvent. The new complexes and the uncoordinated PPh2Fc ligand were electrochemically characterised by cyclic and rotating disk voltammetry, UV-visible spectroelectrochemistry, and bulk electrolysis in dichloromethane and acetonitrile. In both cases, oxidation occurs at both the ferrocene and phosphine centres, but the complexes oxidise at more positive potentials than uncoordinated PPh2Fc; subsequently, the metal–phosphorus bond is cleaved, leading to free PPh2Fc+, which undergoes further chemical and electrochemical reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly selective and sensitive electrochemical biosensor has been developed that detects DNA hybridization by employing the electrocatalytic activity of ferrocene (Fc) bearing cyclen complexes (cyclen = 1,4,7,10-tetraazacyclododecane, Fc[Zn(cyclen)H2O]2(ClO4)4 (R1), Fc(cyclen)2 (R2), Fc[Zn(cyclen)H2O](ClO4)2 (R3), and Fc(cyclen) (R4)). A sandwich-type approach, which involves hybridization of a target probe hybridized with the preimmobilized thiolated capture probe attached to a gold electrode, is employed to fabricate a DNA duplex layer. Electrochemical signals are generated by voltammetric interrogation of a Fc bearing Zn−cyclen complexes that selectively and quantitatively binds to the duplex layers through strong chelation between the cyclen complexes and particular nucleobases within the DNA sequence. Chelate formation between R1 or R3 and thymine bases leads to the perturbation of base-pair (A−T) stacking in the duplex structure, which greatly diminishes the yield of DNA-mediated charge transport and displays a marked selectivity to the presence of the target DNA sequence. Coupling the redox chemistry of the surface-bound Fc bearing Zn−cyclen complex and dimethylamine provides an electrocatalytic pathway that increases sensitivity of the assay and allows the 100 fM target DNA sequence to be detected. Excellent selectivity against even single-base sequence mismatches is achieved, and the DNA sensor is stable and reusable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reaction of a fluorinated iridium complex with cerium(IV) and organic reducing agents generates an intense emission with a significant hypsochromic shift compared to contemporary chemically-initiated luminescence from metal complexes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research extends the investigations into the chemiluminescence and electrochemiluminescence of platinum group metal reagents and their applications. The effect of the chemical nature of tris(2,2'-bipyridyl)ruthenium(II) and selected analogues on the chemiluminescence reaction is further explored, and this chemistry is extended to include novel iridium(III) and osmium(II) based chemiluminescence reagents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating phenylpyridine- and triazolylpyridine-based ligands decorated with methylsulfonate or tetraethylene glycol (TEG) groups, a series of iridium(III) complexes has been created for green and blue electrogenerated chemiluminescence under analytically useful aqueous conditions, with tri-n-propylamine as a coreactant. The relative electrochemiluminescence (ECL) intensities of the complexes were dependent on the sensitivity of the photodetector over the wavelength range and the pulse time of the applied electrochemical potential. In terms of the integrated area of corrected ECL spectra, with a pulse time of 0.5 s, the intensities of the Ir(III) complexes were between 18 and 102 % that of [Ru(bpy)3 ](2+) (bpy=2,2'-bipyridine). However, when the intensities were measured with a typical bialkali photomultiplier tube, the signal of the most effective blue emitter, [Ir(df-ppy)2 (pt-TEG)](+) (df-ppy=2-(2,4-difluorophenyl)pyridine anion, pt-TEG=1-(2-(2-(2-(2-hydroxyethoxy)ethoxy)ethoxy)ethyl)-4-(2-pyridyl)-1,2,3-triazole), was over 1200 % that of the orange-red emitter [Ru(bpy)3 ](2+) . A combined experimental and theoretical investigation of the electrochemical and spectroscopic properties of the Ir(III) complexes indicated that the greater intensity from [Ir(df-ppy)2 (pt-TEG)](+) relative to those of the other Ir(III) complexes resulted from a combination of many factors, rather than being significantly favored in one area.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preliminary explorations of the annihilation electrogenerated chemiluminescence (ECL) of mixed metal complexes have revealed opportunities to enhance emission intensities and control the relative intensities from multiple luminophores through the applied potentials. However, the mechanisms of these systems are only poorly understood. Herein, we present a comprehensive characterisation of the annihilation ECL of mixtures of tris(2,2′-bipyridine)ruthenium(ii) hexafluorophosphate ([Ru(bpy)3](PF6)2) and fac-tris(2-phenylpyridine)iridium(iii) ([Ir(ppy)3]). This includes a detailed investigation of the change in emission intensity from each luminophore as a function of both the applied electrochemical potentials and the relative concentrations of the two complexes, and a direct comparison with two mixed (Ru/Ir) ECL systems for which emission from only the ruthenium-complex was previously reported. Concomitant emission from both luminophores was observed in all three systems, but only when: (1) the applied potentials were sufficient to generate the intermediates required to form the electronically excited state of both complexes; and (2) the concentration of the iridium complex (relative to the ruthenium complex) was sufficient to overcome quenching processes. Both enhancement and quenching of the ECL of the ruthenium complex was observed, depending on the experimental conditions. The observations were rationalised through several complementary mechanisms, including resonance energy transfer and various energetically favourable electron-transfer pathways.