7 resultados para Hydrogen Adsorption

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coffee shell is an environmental concern to china along with steady growth of coffee production. This study attempt to characterize high specific surface area activated carbon (HSSA-AC). HSSA-AC was prepared from carbonized material which obtained from coffee shell by microwave irradiation. Textural properties and surface chemistry of HSSA-AC were found to be strongly depending on the activation time, KOH/C ratio and particle size. The textural properties of the samples were investigated by means of scanning electron microscope analyzer (SEM), cryogenic N2 adsorption, whereas, surface chemistry was probed through Fourier Transform Infrared (FTIR) spectrometer (Maldhure and Ekhe, 2011) and Hydrogen storage performance was tested by H2 adsorption. Maximum surface area of 3149 m2 g−1, Iodine adsorption value 2566 mg/g, Methylene Blue adsorption value 47.5 mL 0.1 g−1, the hydrogen adsorption value 0.91 wt% at 14 MPa and yield 39% was observed in case of microwave treated sample at activation time 9 min, KOH/C ratio 5 and particle size 0.25–0.71 mm. Results revealed usefulness of microwave treatment in influencing surface area of HSSA-AC which could be used in a hydrogen storage material research application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

While researchers are trying to solve the world's energy woes, hydrogen is becoming the key component in sustainable energy systems. Hydrogen could be produced through photocatalytic water-splitting technology. It has also been found that hydrogen and methane could be produced through photocatalytic reduction of carbon dioxide with water. In this exploratory study, instead of coating catalysts on a substrate, pellet form of catalyst, which has better adsorption capacity, was used in the photo-reduction of carbon dioxide with water. In the experiment, some water was first absorbed into titanium dioxide pellets. Highly purified carbon dioxide gas was then discharged into a reactor containing these wet pellets, which were then illuminated continuously using UVC lamps. Gaseous samples accumulated in the reactor were extracted at different intervals to analyze the product yields. The results confirmed that methane and hydrogen were photosynthesized using pellet form of TiO2 catalysts. Hydrogen was formed at a rate as high as 0.16 micromoles per hour (μmol h−1). The maximum formation rate of CH4 was achieved at 0.25 μmol h−1 after 24 h of irradiation. CO was also detected.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All alternatives to platinum thus far are based on nonprecious metals, and, to our knowledge, there is no report about a catalyst for electrocatalytic hydrogen evolution beyond metals. Here we couple graphitic-carbon nitride with nitrogen-doped graphene to produce a metal-free hybrid catalyst, which shows an unexpected hydrogen evolution reaction activity with comparable overpotential and Tafel slope to some of well-developed metallic catalysts. Experimental observations in combination with density functional theory calculations reveal that its unusual electrocatalytic properties originate from an intrinsic chemical and electronic coupling that synergistically promotes the proton adsorption and reduction kinetics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hydrogen is considered one of the best energy sources. However, the lack of effective, stable, and safe storage materials has severely prevented its practical application. Strong effort has been made to try new nanostructured materials as new storage materials. In this study, oxygen-doped boron nitride (BN) nanosheets with 2-6 atomic layers, synthesized by a facile sol-gel method, show a storage capacity of 5.7wt% under 5MPa at room temperature, which is the highest hydrogen storage ever reported for any BN materials. Importantly, 89% of the stored hydrogen can be released when the hydrogen pressure is reduced to ambient conditions. Furthermore, the BN nanosheets exhibit an excellent storage cycling stability due to the stable two-dimensional nanostructure. The first principles calculations reveal that the high hydrogen storage mainly origins from the oxygen-doping of the BN nanosheets with increased adsorption energies of H2 on BN by 20-80% over pure BN sheets at the different coverage. © 2014 Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article reported adsorption mechanism of mixed pesticides Prometryne-Acetochlor (PA) in soil. Thermodynamics and adsorption isotherms were used to preliminarily evaluate adsorption force, and IR and XRD were used to characterize adsorption characteristics between Prometryne/Acetochlor (PA) and soil, The result shows that adsorption isotherms is F-type, adsorptive heat are 9.57 kJ/mol and -93.83 kJ/mol of prometryne and acetochlor respectively. Hydrogen bonds also had been confirmed by IR and XRD analysis. The results can provide a theoretical support to the use of mixed pesticides agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate that an amphiphilic block copolymer such as polyethylene glycol-b-polyethylene can be used as both dispersing and interfacial compatibilizing agent for the melt compounding of LLDPE with cellulose nano-fibers. A simple and effective spray drying methodology was first used for the first time for the preparation of a powdered cellulose nano-fibers extrusion feedstock. Surface adsorption of the amphiphilic PEG-b-PE was carried out directly in solution during this process. These various dry cellulosic feedstock were subsequently combined with LLDPE via extrusion to produce a range of nano-composites. The collective outcomes of this research are several folds. Firstly we show that presence of surface adsorbed PEG-b-PE effectively hindered the aggregation of the cellulose nano-fibers during the extrusion, affording clear homogenous materials with minimum aggregation even at the highest loading of cellulose nano-fibers (∼23 vol.%). Secondly, the tailored LLDPE/cellulose interface arising from intra- and inter-molecular hydrogen and Van der Waals bonds yielded significant levels of mechanical improvements in terms of storage and tensile modulus. We believe this study provides a simple technological template to produce high quality and performant polyolefins cellulose-based nano-composites.