15 resultados para High angular resolution diffusion imaging (HARDI)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report observations of the microstructure of 7 pulsars at 102 MHz with a time resolution of up to 1 μs. We have detected fine pulse structure with a μs time-scale for all seven pulsars. We observe that interstellar scattering does not broaden the μs time-scale pulsar microstructure, and find structure of a time-scale much shorter than the interstellar scatter broadening. In addition to the previously known structure with time-scale τμ of tens of μs, we have detected structures with characteristic time-scale of a few μs, nearly equal to the reciprocal of the analysis bandwidth. This suggests that even shorter micropulses may exist.
Micropulses usually cluster in groups, each of duration tens to hundreds of μs, which may be identified as microstructure observed previously with smaller time resolution.
In addition to the previously known quasi-periodicity of hundreds of milliseconds, we reveal a structures with characteristic period of tens of μs. We observe structures with short quasi-periodicity to have a limited bandwidth. The characteristic period Pμ of these structures in PSR B0950+08 does not have a common value for different frequency regions in the same single pulse.
Scattering was revealed as a train of quasi-periodic micropulses with an exponentially damped envelope. The scatter-broadening and decorrelation bandwidth were measured. We report two time-scales of decorrelation bandwidth of pulsar PSR B0950+08 and propose two branches of Δνd(ν) dependence.
The dispersion measure of PSR B0950+08 as DM= 2.9686 ± 0.0001 pc cm−3 has been determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the design and development of a low cost three-dimensional laser imaging system for scanning suitable surfaces. A generic, low cost, off-the-shelf laser range finder is used to obtain the primary one dimensional distance measurement. The range finder’s laser beam is reflected by a twin-axis mirror assembly driven by stepper motors providing the system with two angular degrees of freedom, allowing 3-D measurements to be determined. A camera and image processing techniques are used to determine the measured 1-D range value from the generic range-finding device. A computer program then uses the obtained data to create a 3-D point cloud. An algorithm is then used to construct a 3-D wire frame mesh representing the scanned surface. The system has an angular resolution of 1.8° and the results obtained demonstrate the system to have an accuracy of approximately ± 2cm at a scanning distance of 1.0m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Q-ball imaging was presented as a model free, linear and multimodal diffusion sensitive approach to reconstruct diffusion orientation distribution function (ODF) using diffusion weighted MRI data. The ODFs are widely used to estimate the fiber orientations. However, the smoothness constraint was proposed to achieve a balance between the angular resolution and noise stability for ODF constructs. Different regularization methods were proposed for this purpose. However, these methods are not robust and quite sensitive to the global regularization parameter. Although, numerical methods such as L-curve test are used to define a globally appropriate regularization parameter, it cannot serve as a universal value suitable for all regions of interest. This may result in over smoothing and potentially end up in neglecting an existing fiber population. In this paper, we propose to include an interpolation step prior to the spherical harmonic decomposition. This interpolation based approach is based on Delaunay triangulation provides a reliable, robust and accurate smoothing approach. This method is easy to implement and does not require other numerical methods to define the required parameters. Also, the fiber orientations estimated using this approach are more accurate compared to other common approaches.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-dimensional (2D) materials usually have a layer-dependent work function, which require fast and accurate detection for the evaluation of their device performance. A detection technique with high throughput and high spatial resolution has not yet been explored. Using a scanning electron microscope, we have developed and implemented a quantitative analytical technique which allows effective extraction of the work function of graphene. This technique uses the secondary electron contrast and has nanometre-resolved layer information. The measurement of few-layer graphene flakes shows the variation of work function between graphene layers with a precision of less than 10 meV. It is expected that this technique will prove extremely useful for researchers in a broad range of fields due to its revolutionary throughput and accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have introduced an in-situ Raman monitoring technique to investigate the crystallization process inside protein drops. In addition to a conventional vapour-diffusion process, a novel procedure which actively stimulates the evaporation from a protein drop during crystallization was also evaluated, with lysozyme as a model protein. In contrast to the conventional vapour-diffusion condition, the evaporation-stimulated growth of crystals was initiated in a simple dehydration scheme and completed within a significantly shorter time. To gain an understanding of crystallization behaviours under the conditions with and without such evaporation stimulation, confocal Raman spectroscopy combined with linear regression analysis was used to monitor both lysozyme and HEPES buffer concentrations in real time. The confocal measurements having a high spatial resolution and good linear response revealed areas of local inhomogeneity in protein concentration when the crystallization started. The acquired concentration profiles indicated that (1)ÿthe evaporation-stimulated crystallization proceeded with protein concentrations lower than those under conventional vapour diffusion, and (2)ÿcrystals under the evaporation-stimulated condition were noticeable within an early stage of crystallization before the protein concentration approached its maximum value. The HEPES concentration profiles, on the other hand, increased steadily towards the end of the process regardless of the conditions used for crystallization. In particular, the observed local inhomogeneities specific to protein distribution suggested an accumulation mechanism of protein molecules that initiates the nucleation of crystals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The noninvasive brain imaging modalities have provided us an extraordinary means for monitoring the working brain. Among these modalities, Electroencephalography (EEG) is the most widely used technique for measuring the brain signals under different tasks, due to its mobility, low cost, and high temporal resolution. In this paper we investigate the use of EEG signals in brain-computer interface (BCI) systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transmission Electron Microscopy (TEM) can be used to measure the size distribution and volume fraction of fine scale precipitates in metallic systems. However, such measurements suffer from a number of artefacts that need to be accounted for, related to the finite thickness of the TEM foil and to the projected observation in two dimensions of the microstructure. We present a correction procedure to describe the 3D distribution of disc-like particles and apply this method to the plate-like T1 precipitates in an Al-Li-Cu alloy in two ageing conditions showing different particle morphologies. The precipitates were imaged in a High-Angular Annular Dark Field Microscope (HAADF-STEM). The corrected size distribution is further used to determine the precipitate volume fraction. Atom probe tomography (APT) is finally utilised as an alternative way to measure the precipitate volume fraction and test the validity of the electron microscopy results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 0.79C-1.5Si-1.98Mn-0.98Cr-0.24Mo-1.06Al-1.58Co (wt%) steel was isothermally heat treated at 350°C bainitic transformation temperature for 1 day to form fully bainitic structure with nano-layers of bainitic ferrite and retained austenite, while a 0.26C-1.96Si-2Mn-0.31Mo (wt%) steel was subjected to a successive isothermal heat treatment at 700°C for 300 min followed by 350°C for 120 min to form a hybrid microstructure consisting of ductile ferrite and fine scale bainite. The dislocation density and morphology of bainitic ferrite, and retained austenite characteristics such as size, and volume fraction were studied using Transmission Electron Microscopy. It was found that bainitic ferrite has high dislocation density for both steels. The retained austenite characteristics and bainite morphology were affected by composition of steels. Atom Probe Tomography (APT) has the high spatial resolution required for accurate determination of the carbon content of the bainitic ferrite and retained austenite, the solute distribution between these phases and calculation of the local composition of fine clusters and particles that allows to provide detailed insight into the bainite transformation of the steels. The carbon content of bainitic ferrite in both steels was found to be higher compared to the para-equilibrium level of carbon in ferrite. APT also revealed the presence of fine C-rich clusters and Fe-C carbides in bainitic ferrite of both steels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning white beam X-ray microdiffraction has been used to study the heterogeneous grain deformation in a polycrystalline Mg alloy (MgAZ31). The high spatial resolution achieved on beamline 7.3.3 at the Advanced Light Source provides a unique method to measure the elastic strain and orientation of single grains as a function of applied load. To carry out in-situ measurements a light weight (~0.5kg) tensile stage, capable of providing uniaxial loads of up to 600kg, was designed to collect diffraction data on the loading and unloading cycle. In-situ observation of the deformation process provides insight about the crystallographic deformation mode via twinning and dislocation slip.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently effective connectivity studies have gained significant attention among the neuroscience community as Electroencephalography (EEG) data with a high time resolution can give us a wider understanding of the information flow within the brain. Among other tools used in effective connectivity analysis Granger Causality (GC) has found a prominent place. The GC analysis, based on strictly causal multivariate autoregressive (MVAR) models does not account for the instantaneous interactions among the sources. If instantaneous interactions are present, GC based on strictly causal MVAR will lead to erroneous conclusions on the underlying information flow. Thus, the work presented in this paper applies an extended MVAR (eMVAR) model that accounts for the zero lag interactions. We propose a constrained adaptive Kalman filter (CAKF) approach for the eMVAR model identification and demonstrate that this approach performs better than the short time windowing-based adaptive estimation when applied to information flow analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographer C. W. Thornthwaite proposed in 1948 a moisture index called Thornthwaite Moisture Index (TMI) as part of a water balance model for a new classification system for climate. The importance of TMI climatic classification has been recognised in many areas of knowledge and practice worldwide over the last 60 years. However, although past climate research was focused on developing adequate methods for climate classification, current research is more concerned with understanding the patterns of climate change. The use of TMI as an indicator for climate change is still an incipient area of research. The contributions of this paper are twofold. First, it is to fully document a methodology based on geostatistics adopted to produce a time series of TMI maps that are accurate and have high spatial resolution. The state of Victoria, in Australia, over the last century, is used as the case study. Second, by analysing these maps, the paper presents a general evaluation of the spatial patterns found in Victoria related to moisture variability across space and over time. Some potential implications of the verified moisture changes are discussed, and a number of ideas for further development are suggested. © 2014 Institute of Australian Geographers.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Disease caused by the soilborne plant pathogen Phytophthora cinnamomi causes long-term floristic and structural changes in native vegetation communities in Australia. Key components of the management of this disease are to know where it occurs and the rate at which it spreads. The distribution of P. cinnamomi has generally been assessed as locality points of infestation and mapping the extent of diseased vegetation in any area is difficult and costly. This study was undertaken in P. cinnamomi-infested heathland communities in southern Victoria, Australia, where the symptoms of P. cinnamomi arise as a mosaic within healthy vegetation. We investigated the potential to improve the efficiency and effectiveness of mapping and monitoring vegetation affected by P. cinnamomi using digital multi-spectral imaging. This technique was developed for the purposes of monitoring vegetation and provides a single, seamless ortho-rectified digital image over the total area of interest. It is used to spatially quantify small differences in the characteristics of vegetation. In this study, the symptoms of disease caused by P. cinnamomi infestation were related to differences in the imagery and were used to map areas of infestation. Comparison of the digital multi-spectral imaging indications with on-ground observations gave moderate accuracy between the datasets (κ = 0.49) for disease and healthy indications. This study demonstrates the ability of the technique to determine disease extent over broad areas in native vegetation and provides a non-invasive, cost effective tool for management.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Abnormalities within white matter (WM) have been identified in autism spectrum disorder (ASD). Although there is some support for greater neurobiological deficits among females with ASD, there is little research investigating sex differences in WM in ASD. We used diffusion tensor imaging (DTI) to investigate WM aberration in 25 adults with high-functioning ASD and 24 age-, sex- and IQ-matched controls. Tract-based spatial statistics (TBSS) was used to explore differences in WM in major tract bundles. The effects of biological sex were also investigated. TBSS revealed no differences in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), or axial diffusivity (AD) between groups. There were no effects of biological sex. We consider whether methodological differences between past studies have contributed to the highly heterogeneous findings in the literature. Finally, we suggest that, among a high-functioning sample of adults with ASD, differences in WM microstructure may not be related to clinical impairment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Severe plastic deformation via equal-channel angular pressing was shown to induce characteristic ultra-fast diffusion paths in Ni (Divinski et al., 2011). The effect of heat treatment on these paths, which were found to be represented by deformation-modified general high-angle grain boundaries (GBs), is investigated by accurate radiotracer self-diffusion measurements applying the 63Ni isotope. Redistribution of free volume and segregation of residual impurities caused by the heat treatment triggers relaxation of the diffusion paths. A correlation between the GB diffusion kinetics, internal friction, microstructure evolution and microhardness changes is established and analyzed in detail. A phenomenological model of diffusion enhancement in deformation-modified GBs is proposed.