16 resultados para Gfp-like Proteins

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Na+/H+ exchangers are integral membrane proteins that exchange Na+ and H+ across cell membranes. The Na+/H+ exchangers 2 and 3 are epithelial isoforms in mammals and contribute to acid–base homeostasis. The gills of fishes, including elasmobranchs, are also associated with acid/base balance, and are probably the primary acid/base regulatory organ. This study examines the presence of Na+/H+ exchangers 2 and 3 using immunohistochemistry and immunoblotting in the gills of four species of elasmobranchs, the banjo ray (Trygonorrhina fasciata), southern eagle ray (Myliobatis australis), the gummy shark (Mustelus antarcticus) and the Australian angel shark (Squatina australis) using heterologous antibodies. Na+/H+ exchanger 2-like immunoreactivity was observed in the gills of the banjo ray, eagle ray and angel shark. In the banjo and eagle rays, this Na+/H+ exchanger-like immunoreactivity co-localised with immunoreactivity to Na+/K+-ATPase, a marker for the mitochondrial-rich cells of fishes. Na+/H+ exchanger 3-like immunoreactivity was only observed in the gills of the angel and gummy sharks, some Na+/H+ exchanger 3-like cells also showed Na+/K+-ATPase immunoreactivity. However, immunoblotting of banjo and eagle ray gill membranes demonstrated Na+/H+ exchanger 3-like immunoreactivity, which was not consistent with the immunohistochemical results. These data demonstrate the presence of epithelial Na+/H+ exchangers 2 and 3 in the gills of elasmobranchs and a link with acid/base regulation is suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL) proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM) models were developed for predicting HbL proteins based upon amino acid composition (AC), dipeptide composition (DC), hybrid method (AC + DC), and position specific scoring matrix (PSSM). In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM) profiles. The average accuracy, standard deviation (SD), false positive rate (FPR), confusion matrix, and receiver operating characteristic (ROC) were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The evolutionary distribution of chloroplast and mitochondrial division proteins has been investigated, gleaning new insights to the evolution of organelle division: specifically the use and features of FtsZ and dynamin-like proteins. Additional novel proteins that are potentially involved in mitochondrial division have been identified in Dictyostelium discoideum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To investigate protein import into the mitochondria of Dictyostelium discoideum, green fluorescent protein (GFP) was fused as a reporter protein either to variable lengths of the N-terminal region of chaperonin 60 (the first 23, 40, 80, 97, and 150 amino acids) or to the mitochondrial targeting sequence of DNA topoisomerase II. The fusion proteins were expressed in AX2 cells under the actin-15 promoter. Fluorescence images of GFP transformants confirmed that Dictyostelium chaperonin 60 is a mitochondrial protein. The level of the mitochondrially targeted GFP fusion proteins was unexpectedly much lower than the nontargeted (cytoplasmic) forms. The distinction between targeted and nontargeted protein activities was investigated at both the transcriptional and translational levels in vivo. We found that targeting GFP to the mitochondria results in reduced levels of the fusion protein even though transcription of the fusion gene and the stability of the protein are unaffected. [35S]methionine labeling and GFP immunoprecipitation confirmed that mitochondrially targeted GFP is translated at much slower rates than nontargeted GFP. The results indicate a novel phenomenon, import-associated translational inhibition, whereby protein import into the mitochondria limits the rate of translation. The simplest explanation for this is that import of the GFP fusion proteins occurs cotranslationally, i.e., protein synthesis and import into mitochondria are coupled events. Consistent with cotranslational import, Northern analysis showed that the GFP mRNA is associated with isolated mitochondria. This association occurred regardless of whether the GFP was fused to a mitochondrial leader peptide. However, the presence of an import-competent leader peptide stabilized the mRNA-mitochondria association, rendering it more resistant to extensive EDTA washing. In contrast with GFP, the mRNA of another test protein, aequorin, did not associate with the mitochondria, and its translation was unaffected by import of the encoded polypeptide into the mitochondria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The plant hormone, abscisic acid (ABA), has previously been shown to have an impact on the resistance or susceptibility of plants to pathogens. In this thesis, it was shown that ABA had a regulatory effect on an extensive array of plant defence responses in three different plant and pathogen interaction combinations as well as following the application of an abiotic elicitor. In unique studies using ABA deficient mutants of Arabidopsis, exogenous ABA addition or ABA biosynthesis inhibitor application and simulated drought stress, ABA was shown to have a profound effect on the outcome of interactions between plants and pathogens of differing lifestyles and from different kingdoms. The systems used included a model plant and an important agricultural species: Arabidopsis thaliana (Arabidopsis) and Peronospora parasitica (a biotrophic Oomycete pathogen), Arabidopsis and Pseudomonas syringae pathovar tomato (a biotrophic bacterial pathogen) and an unrelated plant species, soybean (Glycine max) and Phytophthora sojae (a hemibiotrophic Oomycete pathogen), Generally, a higher than basal endogenous ABA concentration within plant tissues at the time of avirulent pathogen inoculation, caused an interaction shift towards what phenotypically resembled susceptibility. Conversely, a lower than basal endogenous ABA concentration in plants inoculated with a virulent pathogen caused a shift towards resistance. An extensive suppressive effect of ABA on defence responses was revealed by a range of techniques that included histochemical, biochemical and molecular approaches. A universal effect of ABA on suppression or induction of the phenylpropanoid pathway via regulation of the key entry point gene, phenylalanine ammonia-lyase (PAL), when stimulated by biotic or abiotic elicitors was shown. ABA also influenced a wide variety of other defence-related components such as: the development of a hypersensitive response (HR), the accumulation of the reactive oxyden species, hydrogen peroxide and the cell wall strengthening compounds lignin and callose, accumulation of SA and the phytoalexin, glyceollin and the transcription of the SA-dependent pathogenesis- related gene (PR-1). The near genome-wide microarray gene expression analysis of an ABA induced susceptible interaction also revealed an yet unprecedented insight into the great diversity of defence responses that were influenced by ABA that included: disease resistance like proteins, antimicrobial proteins as well as phenylpropanoid and tryptophan pathway enzymes. Subtle differences were found in the number and type of defence responses that were regulated by ABA in each type of plant and pathogen interaction that was studied. This thesis has clearly identified in plant/pathogen interactions previously unknown and important roles for ABA in the regulation of many defence responses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is paucity of data regarding hydrocarbon exposure of tropical fish species inhabiting the waters near oil and gas platforms on the Northwest Shelf of Australia. A comprehensive field study assessed the exposure and potential effects associated with the produced water (PW) plume from the Harriet A production platform on the northwest shelf in a local reef species, Stripey seaperch (Lutjanus carponotatus). This field study was a continuation of an earlier pilot study which concluded that there were “warning signs” of potential biological effects on fish populations exposed to PW. A 10-day field caging study was conducted deploying 15 individual fish into 6 separate steel cages set 1-m subsurface at 3 stations in a concentration gradient moving away from the platform. A battery of biomarkers were evaluated including hepatosomatic index (HSI), total cytochrome P450, bile metabolites, CYP1A-, CYP2K- and CYP2M-like proteins, cholinesterase (ChE) activity, and histopathology of liver and gill tissues. Water column and PW effluent samples was also collected. Results confirmed that PAH metabolites in bile, CYP1A-, CYP2K-, and CYP2M-like proteins and liver histopathology provided evidence of significant exposure and effects after 10 days at the near-field site (~200 m off the Harriet A platform). Hepatosomatic index, total cytochrome P450, and ChE did not provide site-specific differences by day 10 of exposure to PW. CYP proteins were shown by principal component analysis (PCA) to be the best diagnostic tool for determining exposure and associated biological effects of PW on L. carponotatus. Using a suite of biomarkers has been widely advocated as a vital component in environmental risk assessments worldwide. This study demonstrates the usefulness of biomarkers for assessing the Harriet A PW discharge into Australian waters with broader applications for other PW discharges. This approach has merit as a valuable addition to environmental management strategies for protecting Australia’s tropical environment and its rich biodiversity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Plasmodium falciparum, the causative agent of malaria, relies on a complex protein-secretion system for protein targeting into numerous subcellular destinations. Recently, a homologue of the Golgi re-assembly stacking protein (GRASP) was identified and used to characterise the Golgi organisation in this parasite. Here, we report on the presence of a splice variant that leads to the expression of a GRASP isoform. Although the first GRASP protein (GRASP1) relies on a well-conserved myristoylation motif, the variant (GRASP2) displays a different N-terminus, similar to GRASPs found in fungi. Phylogenetic analyses between GRASP proteins of numerous taxa point to an independent evolution of the unusual N-terminus that could reflect unique requirements for Golgi-dependent protein sorting and organelle biogenesis in P. falciparum. Golgi association of GRASP2 depends on the hydrophobic N-terminus that resembles a signal anchor, leading to a unique mode of Golgi targeting and membrane attachment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previously we found elevated beacon gene expression in the hypothalamus of obese Psammomys obesus. Beacon administration into the lateral ventricle of P. obesus stimulated food intake and body weight gain. In the current study we used yeast two-hybrid technology to screen for proteins in the human brain that interact with beacon. CLK4, an isoform of cdc2/cdc28-like kinase family of proteins, was identified as a strong interacting partner for beacon. Using active recombinant proteins and a surface plasmon resonance based detection technique, we demonstrated that the three members of this subfamily of kinases (CLK1, 2, and 4) all interact with beacon. Based on the known sequence and functional properties of beacon and CLKs, we speculate that beacon could either modulate the function of key regulatory molecules such as PTP1B or control the expression patterns of specific genes involved in the central regulation of energy metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (~67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3α/ß Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Integral proteins in the outer membrane of mitochondria control all aspects of organelle biogenesis, being required for protein import, mitochondrial fission, and, in metazoans, mitochondrial aspects of programmed cell death. How these integral proteins are assembled in the outer membrane had been unclear. In bacteria, Omp85 is an essential component of the protein insertion machinery, and we show that members of the Omp85 protein family are also found in eukaryotes ranging from plants to humans. In eukaryotes, Omp85 is present in the mitochondrial outer membrane. The gene encoding Omp85 is essential for cell viability in yeast, and conditional omp85 mutants have defects that arise from compromised insertion of integral proteins like voltage-dependent anion channel (VDAC) and components of the translocase in the outer membrane of mitochondria (TOM) complex into the mitochondrial outer membrane.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Alzheimer’s disease Aβ peptide can increase the levels of cell-associated amyloid precursor protein (APP) in vitro. To determine the specificity of this response for Aβ and whether it is related to cytotoxicity, we tested a diverse range of fibrillar peptides including amyloid-β (Aβ), the fibrillar prion peptides PrP106–126 and PrP178–193 and human islet-cell amylin. All these peptides increased the levels of APP and amyloid precursor-like protein 2 (APLP2) in primary cultures of astrocytes and neurons. Specificity was shown by a lack of change to amyloid precursor-like protein 1, τ-1 and cellular prion protein (PrPc) levels. APP and APLP2 levels were elevated only in cultures exposed to fibrillar peptides as assessed by electron microscopy and not in cultures treated with non-fibrillogenic peptide variants or aggregated lipoprotein. We found that PrP106–126 and the non-toxic but fibril-forming PrP178–193 increased APP levels in cultures derived from both wild-type and PrPc-deficient mice indicating that fibrillar peptides up-regulate APP through a non-cytotoxic mechanism and irrespective of parental protein expression. Fibrillar PrP106–126 and Aβ peptides bound recombinant APP and APLP2 suggesting the accumulation of these proteins was mediated by direct binding to the fibrillated peptide. This was supported by decreased APP accumulation following extensive washing of the cultures to remove fibrillar aggregates. Pre-incubation of fibrillar peptide with recombinant APP18–146, the putative fibril binding site, also abrogated the accumulation of APP. These findings show that diverse fibrillogenic peptides can induce accumulation of APP and APLP2 and this mechanism could contribute to pathogenesis in neurodegenerative disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the key processes in the pathobiology of the malaria parasite is the invasion and subsequent modification of the human erythrocyte. In this complex process, an unknown number of parasite proteins are involved, some of which are leading vaccine candidates. The majority of the proteins that play pivotal roles in invasion are either stored in the apical secretory organelles or located on the surface of the merozoite, the invasive stage of the parasite. Using transcriptional and structural features of these known proteins, we performed a genomewide search that identified 49 hypothetical proteins with a high probability of being located on the surface of the merozoite or in the secretory organelles. Of these candidates, we characterized a novel leucine zipper-like protein in Plasmodium falciparum that is conserved in Plasmodium spp. This protein is expressed in late blood stages and localizes to the rhoptries of the parasite. We demonstrate that this Plasmodium sp.-specific protein has a high degree of conservation within field isolates and that it is refractory to gene knockout attempts and thus might play an important role in invasion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Worldwide emergence of Industrial biotechnology (IB) is providing opportunities to produce enzymes/proteins with variety of industrial/therapeutic applications. In transitioning the Australian economy towards a sustainable future, Federal government identified the development of IB pathway which would ensure increased productivity, enhanced sustainability, health, safety and reduced environmental footprint. The presentation will revolve around specific stories that drives Deakin University newest technology platform which applies biology and fermentation in an integrated way to play a crucial role in developing cost-effective technologies for the development of molecules that can benefit pharmaceutical and food industry in regional Victoria and Australia in general. The talk will also highlight specific examples where new products like recombinant rhamnosidase (an enzyme used for the production of flavonoids with health benefits) and ribosome inactivating proteins (detected in medicinal plants which possess RNA N- glycosidase activity that depurinates the major rRNA, thus damaging ribosome in an irreversible manner and arresting protein synthesis) would be made available through bioprocessing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pheromones are chemicals used to communicate between animals of the same species, and are thought to be used by most marine animals. With limited vision, abalone primarily sense their world chemically, and pheromones may play an important role in settlement, attraction, recognition, alarm, and reproduction. Despite this, there has been no detailed investigation into pheromone substances, both in their precise biochemical nature or pheromonal function. In this study, we investigated the presence of pheromonelike substances from the hypobranchial gland of the abalone Haliotis asinina using bioassays, immunohistochemistry, Western blotting, and reverse-phase high-performance liquid chromatography (RP-HPLC). The hypobranchial gland of many prosobranchial marine molluscs has been classified as a sex auxiliary gland releasing unknown substances during spawning. In our study, cephalic tentacle assays demonstrated that the cell extracts of the hypobranchial gland contain chemical cues that are sensed by conspecifics. An antibody against the sea slug “attractin” pheromone was used as a probe to localize a similar protein in the mucin-secreting cells of the epithelial lining the hypobranchial gland of both male and female abalone. The approximate molecular weight of this abalone attractin-like protein is 30 kDa in both males and females. Fractionation of hypobranchial gland extracts by C5 RP-HPLC could not selectively purify this protein, and no sex-specific differences were observed. We predict that the attractin-like protein could be one of a number of important proteins involved in maturation, aggregation, and/or spawning behavior of abalone. In future research, additional hypobranchial gland components will be tested further for these types of behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plasmodium parasites remodel their vertebrate host cells by translocating hundreds of proteins across an encasing membrane into the host cell cytosol via a putative export machinery termed PTEX. Previously PTEX150, HSP101 and EXP2 have been shown to be bona fide members of PTEX.

Here we validate that PTEX88 and TRX2 are also genuine members of PTEX and provide evidence that expression of PTEX components are also expressed in early gametocytes, mosquito and liver stages, consistent with observations that protein export is not restricted to asexual stages. Although amenable to genetic tagging, HSP101, PTEX150, EXP2 and PTEX88 could not be genetically deleted in Plasmodium berghei, in keeping with the obligatory role this complex is postulated to have in maintaining normal blood-stage growth.

In contrast, the putative thioredoxin-like protein TRX2 could be deleted, with knockout parasites displaying reduced grow-rates, both in vivo and in vitro, and reduced capacity to cause severe disease in a cerebral malaria model. Thus, while not essential for parasite survival, TRX2 may help to optimize PTEX activity. Importantly, the generation of TRX2 knockout parasites that display altered phenotypes provides a much-needed tool to dissect PTEX function.