81 resultados para GLOW-DISCHARGE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface engineering in solids has become an important field in materials science. Glow-discharge optical emission spectrometry (GD-OES) has proven to be a powerful tool for the rapid analysis of elements in the surface of solids. One may employ GD-OES to determine quantitatively the bulk concentration of elements in a sample, and elemental concentrations as a function of depth. Presented here is an overview of GD-OES analysis and an application to aluminium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glow-Discharge Optical Emission Spectrometry (GD-OES) is a powerful technique for the rapid analysis of elements in a solid surface as a function of depth. DC-GD-OES allows depth profiling on electrically conductive surfaces only, and has proven to be difficult for the analysis of insulating layers, such as oxides. However, the technique of radio-frequency (RF) GD-OES has the advantage of being able to depth profile through multiple layers, both conducting and insulating. In this work, a LECO GDS- 850A spectrometer was calibrated for aluminium, oxygen, and other elements, with the RF source installed. A quantitative depth profile for a sample of tempered aluminium alloy 7475 is presented and compared with earlier work[1,2].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glow-discharge optical emission spectrometry (GD-OES) is a powerful tool for the rapid analysis of elements in the surface of solids. One may employ GD-OES to determine quantitatively the bulk concentration of elements in a sample. With further calibration, one may also obtain elemental concentrations as a function of depth into the sample. This allows depth profiling on a host of advanced materials: treated metals, coated metals and other materials, multi-layers, painted surfaces, hard samples coated with polymers, thin films, and many others.

A consortium of institutions in Victoria, led by Deakin University, has purchased a new glow-discharge optical emission spectrometer. This instrument has the ability to perform elemental depth profiling on a wide range of materials. This technique, the first of its kind in Australia, is of particular interest to those working on metals, ceramics, glasses, coatings, semi-conductors, and multi-layers. We present here an overview of depth profiling by GD-OES and some examples of its use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micropatterning of surfaces with varying chemical, physical and topographical properties usually requires a number of fabrication steps. Herein, we describe a micropatterning technique based on plasma enhanced chemical vapour deposition (PECVD) that deposits both protein resistant and protein repellent surface chemistries in a single step. The resulting multifunctional, selective surface chemistries are capable of spatially controlled protein adhesion, geometric confinement of cells and the site specific confinement of enzyme mediated peptide self-assembly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work employed a commercial nitrocaburising process to diffuse a coating onto M2 grade high speed tool steel. Properties of the nitrocaburised coating (CN) such as thickness, roughness and hardness were characterised using a variety of techniques including Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). A tribological test has been developed in which two nominally identical crossed cylinders slide over each other under selected test conditions. The test has been employed to investigate the wear performance of both CN coated and uncoated M2 specimens and frictional behaviour of the sliding interface between the tool and a AISI 1019 steel workpiece under unlubricated (dry) and lubricated conditions. Fourier Transform Infrared Spectroscopy (FTIR) was used to monitor the formation of chemical species from the oxidation of lubricant during tribological testing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Today the tool industry on a worldwide basis uses hard, wear-resistant, and low-friction coatings produced by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, chemical-vapor deposition (CVD), and physical vapor deposition (PVD). In the current work, two different coatings, nitrocarburized (CN) and titanium carbonitride (TiCN) on M2-grade tool steel, were prepared by commercial diffusion and PVD techniques, respectively. Properties such as thickness, roughness, and hardness were characterized using a variety of techniques, including glow-discharge optical emission spectrometry (GD-OES) and scanning electron microscopy (SEM). A crossed-cylinders wear-testing machine was used to investigate the performances of both coatings under lubrication. The effect of coatings on the performance of lubricants under a range of wear-test conditions was also examined. Degradation of lubricants during tribological testing was explored by Fourier transform infrared (FTIR) spectroscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CrN coatings were formed on plain carbon steel by prenitrocarburizing, followed by thermoreactive deposition and diffusion (TRD) in a fluidized bed furnace at 570 °C. During TRD, Cr was transferred from Cr powder in the fluidized bed to the nitrocarburized substrates by gas-phase reactions initiated by reaction of HCl gas with the Cr. The microstructural processes occurring in the white layer, caused by N diffusion toward the surface during this stage were studied. This study compares TRD atmospheres employing inert gas and HCl or inert gas, H2, and HCl. Surface characterization was performed by scanning electron microscopy (SEM), x-ray diffraction (XRD), and glow-discharge optical-emission spectroscopy (GDOES).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The microstructural processes of Cr(N,C) coating formation by thermoreactive deposition and diffusion (TRD) on pre-nitrocarburised H13 tool steel were studied. Both nitrocarburising and TRD were performed in fluidized bed furnaces at 570 °C. During TRD, chromium was transferred from chromium powder in the fluidized bed, to the nitrocarburised substrates by gas-phase reactions initiated by reaction of HCl gas with the chromium. Addition of 30% H2 to the input inert gas was found to increase the rate of coating formation, although hydrogen reduction resulted in rapid loss of nitrogen to the surface. The reason for the increased rate of coating formation could not be established without further investigation, although several possible explanations have been proposed. It was found that porosity and the formation of an iron nitride ‘cover layer’ during nitrocarburising were the biggest influences on the microstructure of the Cr(N,C) coating. Microstructural characterization of the coatings was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galvanneal is a form of zinc-coated sheet steel, where steel is dipped in molten zinc, and then heat treated in a furnace to produce a complex iron-zinc coating. Many industries, such as automotive, use galvanneal for components fabricated from sheet steel. The microstructural properties of galvanneal have a significant influence on how well the sheet metal changes shape on stamping. By means of optical microscopy, scanning electron microscopy, and glow-discharge optical emission spectrometry, we present a study of the microstructure of several galvanneal samples, both stamped and unformed, relating the phases and morphology of the coatings to performance in stamping operations. Samples of galvanneal were subjected to different heat-treatment temperatures. The frequency of defects in stamped components was found to be related to the average alloy content in the coatings, which varied with furnace temperature. An increased average iron content in the coatings was related to increased powdering defects in stamping operations that use galvanneal coated sheet steel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ammonia dissociation is the controlling reaction for several important thermochemical heat treatment processes; nitriding, nitrocarburising (ferritic and austenitic) and carbonitriding. The fluidised bed furnace is a convenient and widely used medium for all of these treatments, yet understanding of the reaction in a fluidised bed context is minimal. This paper deals with the influence of process parameters on nitrogen activity aN; temperature, fluidising flowrate, ammonia inlet level, carbonaceous gas. Two basic behaviours were observed; inlet NH3-dependant and inlet NHr insensitive, with a transition region at intermediate temperatures. The nitrocarburising response of steel specimens was measured by optical microscopy of the layer thicknesses and glow discharge optical emission spectroscopy (GD-OES) determination of nitrogen depth-penetration profiles. aN was found by gas analysis of the exit stream ammonia with the aid of a dissociation burette.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Galvanneal steel is considered to be better for automotive applications than its counterpart, galvanized steel, mainly because of its superior coating and surface properties. Galvanneal steel is produced by hot dipping sheet steel in a bath of molten zinc with small, controlled, levels of aluminium, followed by annealing which creates a Fe-Zn intermetallic layer. This intermetallic layer of the coating improves spot weldability and improves subsequent paint appearance. However, if the microstructure of the coating is not properly controlled and forming parameters are not properly selected, wear of the coating could occur during stamping. Frictional sliding of the sheet between the tool surfaces results in considerable amount of coating loss. An Interstitial Free steel with a Galvanneal coating of nominally 60g/m2 was used for the laboratory experiments. Flat Face Friction (FFF) tests were performed with different forming conditions and lubricants to simulate the frictional sliding in stamping. Glow-Discharge Optical Emission Spectrometry (DG-OES) was used to measure the change in the coating thickness during sliding. Optical microscopy was considered for imaging the surfaces as well as an optical method to compare the changes in the coating thickness during the forming. The change to the Galvanneal coating thickness was found to be a function of forming parameters.