5 resultados para Formation damage

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

C60 has been shown to give increased sputter yields and, hence, secondary ions when used as a primary particle in SIMS analysis. In addition, for many samples, there is also a reduction in damage accumulation following continued bombardment with the ion beam. In this paper, we report a study of the impact energy (up to 120 keV) of C60 on the secondary ion yield from a number of samples with consideration of any variation in yield response over mass ranges up to m/z 2000. Although increased impact energy is expected to produce a corresponding increase in sputter yield/rate, it is important to investigate any increase in sample damage with increasing energy and, hence, efficiency of the ion beams. On our test samples including a metal, along with organic samples, there is a general increase in secondary ion yield of high-mass species with increasing impact energy. A corresponding reduction in the formation of low-mass fragments is also observed. Depth profiling of organic samples demonstrates that when using C60, there does not appear to be any increase in damage evident in the mass spectra as the impact energy is increased.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper investigates the chip formation mechanism and machinability of two-phase materials, such as, wrought duplex stainless steel alloys SAF 2205 and SAF 2507. SEM and optical microscopic details of the frozen cutting zone and chips revealed that the harder austenite phase dissipates in the advancement of the cutting tool, being effectively squeezed out of the softer ferrite phase. Microhardness profiles reveal correlation in hardness from the workpiece material transitioning to the chip. The tool wear (TiAIN + TiN coated solid carbide twist drill) and machining forces were investigated. Tool wear, was dominantly due to the adhesion process which developed from built-up edge formation, is highly detrimental to the flank face. Flute damage was also observed as a major issue in the drilling of duplex alloys leading to premature tool failure. Duplex 2507 shows higher sensitivity to cutting speed during machining and strain hardening at higher velocity and less machinability due to presence of higher percentage of Ni, Mo and Cr.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The characterisation of strain path with respect to the directionality of defect formation is discussed. The criterion of non-monotonic strain path is used in the scalar and tensor models for damage accumulation and recovery. Comparable analysis of models and their verification has been obtained by simulation of crack initiation in a two-stage metal forming operation consisting of wire drawing followed by constrained upsetting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ‘wear mode diagram’ has been commonly used to classify the deformation regime of the soft work-piece during scratching, into three modes: ploughing, wedge formation and cutting. The scratch test is usedto evaluate wear modes and material removal associated with wear. There are different damage models in the literature used for the description of material behaviour after damage initiation under different loadingconditions. However, there has been little analysis to compare damage models during scratch test conditions. The first aim of this work is first to use a finite element modelling package (Abaqus/Explicit) to build a 3Dmodel to capture deformation modes during scratching with indenters with different attack angles. Three different damage models are incorporated into the model and patterns of damage initiation and propagation arecompared with experimental results from the literature. This work highlights the role of the damage model in accurately capturing wear modes and material removal during two body sliding interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymer-based materials are extensively used in various applications such as aircrafts, civilian structures, oil and gas platforms and electronics. They are, however, inherently damage prone and over time, the formation of cracks and microscopic damages influences the thermo-mechanical and electrical properties, which eventually results in the total failure of the materials. This paper provides an overview of the principal causes of cracking in polymer and composites and summarizes the recent progress in the development of non-destructive techniques in crack detection. Furthermore, recent progress in the development of bio-inspired self-healing methods in autonomic repair is discussed.