28 resultados para FINE STRUCTURE

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A solutionized Al2024 alloy was subjected to rolling at liquid nitrogen temperature (cryorolling) resulting in an ultra-fine stmcture. The material was also subjected to recovery annealing at 160°C. The ultrafine structured material demonstrated increased strength but very low ductility. The uniform elongation of the material after recovery annealing increased without any sacrifice of strength.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formation of defects in hexagonal boron nitride under low-energy argon bombardment has been studied by near-edge X-ray absorption fine structure (NEXAFS) around B and N K-edges. Breaking of B-N bonds and creation of nitrogen vacancies has been identified from the B K-edge, followed by the formation of molecular nitrogen, N2, at interstitial positions. The presence of N2 produces a sharp resonance in the low-resolution NEXAFS spectra around N K-edge, showing the characteristic vibrational fine structure in high-resolution measurements. Several new peaks in NEXAFS spectra have been assigned to boron or nitrogen interstitials, in good agreement with theoretical predictions. © 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Formation of defects in hexagonal and cubic boron nitride (h -BN and c -BN, respectively) under low-energy argon or nitrogen ion-bombardment has been studied by near-edge x-ray absorption fine structure (NEXAFS) around boron and nitrogen K -edges. Breaking of B-N bonds for both argon and nitrogen bombardment and formation of nitrogen vacancies, VN, has been identified from the B K -edge of both h -BN and c -BN, followed by the formation of molecular nitrogen, N2, at interstitial positions. The presence of N 2 produces an additional peak in photoemission spectra around N 1s core level and a sharp resonance in the low-resolution NEXAFS spectra around N K -edge, showing the characteristic vibrational fine structure in high-resolution measurements. In addition, several new peaks within the energy gap of BN, identified by NEXAFS around B and N K -edges, have been assigned to boron or nitrogen interstitials, in good agreement with theoretical predictions. Ion bombardment destroys the cubic phase of c -BN and produces a phase similar to a damaged hexagonal phase. © 2009 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Decoration of nitrogen vacancies by oxygen atoms has been studied by near-edge X-ray absorption fine structure (NEXAFS) around B K-edge in several boron nitride (BN) structures, including bamboo-like and multi-walled BN nanotubes. Breaking of B-N bonds and formation of nitrogen vacancies under low-energy ion bombardment reduces oxidation resistance of BN structures and promotes an efficient oxygen-healing mechanism, in full agreement with some recent theoretical predictions. The formation of mixed O-B-N and B-O bonds is clearly identified by well-resolved peaks in NEXAFS spectra of excited boron atoms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanical cleavage by Scotch tape was the first method to produce graphene and is still widely used in laboratories. However, a critical problem of this method is the extremely low yield. We have tailored ball milling conditions to produce gentle shear forces that produce high quality boron nitride (BN) nanosheets in high yield and efficiency. The in-plane structure of the BN nanosheets has not been damaged as shown by near edge X-ray absorption fine structure measurements. The benzyl benzoate acts as the milling agent to reduce the ball impacts and milling contamination. This method is applicable to any layered materials for producing nanosheets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The intrinsic stress, film density and nitrogen content of carbon nitride (CNx) films deposited from a filtered cathodic vacuum arc were determined as a function of substrate bias, substrate temperature and nitrogen process pressure. Contour plots of the measurements show the deposition conditions required to produce the main structural forms of CNx including N-doped tetrahedral amorphous carbon (ta-C:N) and a variety of nitrogen containing graphitic carbons. The film with maximum nitrogen content (~ 30%) was deposited at room temperature with 1.0 mTorr N2 pressure and using an intermediate bias of - 400 V. Higher nitrogen pressure, higher bias and/or higher temperature promoted layering with substitutional nitrogen bonded into graphite-like sheets. As the deposition temperature exceeded 500 °C, the nitrogen content diminished regardless of nitrogen pressure, showing the meta-stability of the carbon-nitrogen bonding in the films. Hardness and ductility measurements revealed a diverse range of mechanical properties in the films, varying from hard ta-C:N (~ 50 GPa) to softer and highly ductile CN x which contained tangled graphite-like sheets. Through-film current-voltage characteristics showed that the conductance of the carbon nitride films increased with nitrogen content and substrate bias, consistent with the transition to more graphite-like films. © 2014 Elsevier B.V.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In marine cartilaginous fish, reabsorption of filtered urea by the kidney is essential for retaining a large amount of urea in their body. However, the mechanism for urea reabsorption is poorly understood due to the complexity of the kidney. To address this problem, we focused on elephant fish (Callorhinchus milii) for which a genome database is available, and conducted molecular mapping of membrane transporters along the different segments of the nephron. Basically, the nephron architecture of elephant fish was similar to that described for elasmobranch nephrons, but some unique features were observed. The late distal tubule (LDT), which corresponded to the fourth loop of the nephron, ran straight near the renal corpuscle, while it was convoluted around the tip of the loop. The ascending and descending limbs of the straight portion were closely apposed to each other and were arranged in a countercurrent fashion. The convoluted portion of LDT was tightly packed and enveloped by the larger convolution of the second loop that originated from the same renal corpuscle. In situ hybridization analysis demonstrated that co-localization of Na(+),K(+),2Cl(-) cotransporter 2 and Na(+)/K(+)-ATPase α1 subunit was observed in the early distal tubule and the posterior part of LDT, indicating the existence of two separate diluting segments. The diluting segments most likely facilitate NaCl absorption and thereby water reabsorption to elevate urea concentration in the filtrate, and subsequently contribute to efficient urea reabsorption in the final segment of the nephron, the collecting tubule, where urea transporter-1 was intensely localized.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zipper examined: High-quality boron nitride nanoribbons (BNNRs) can be produced directly during nanotube synthesis without post-treatment. These BNNRs are typically several micrometers long and tens of nanometers wide. Near-edge X-ray absorption fine structure investigations indicated that the BNNRs are of high chemical purity and crystallinity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effect of nominal equivalent strain (between 0 and 1.2), deformation temperature (790– 750°C) and carbon content (0.06 – 0.35%C) was investigated on ferrite grain refinement through dynamic strain induced transformation (DSIT) in plain carbon steels in single pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain, which could be classified into three regions; no DSIT region, DSIT region, and ultrafine ferrite (UFF) grain region. Hence, two critical strains; dynamic strain induced transformation (εC, DSIT) and ultrafine ferrite formation (εC, UFF) were determined. These strains were increased significantly with an increase in carbon content. The critical strain for UFF formation reduced with decrease in deformation temperature. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μm) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite– pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with increase in the nominal equivalent strain.