13 resultados para Engineering Physics

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a transition from passive, traditional delivery of teaching to an active, “cloud-based” method, in a freshman engineering-physics course. The course is delivered to a traditional on-campus cohort, and also to an offcampus cohort by means of distance education and online learning. Cloud teaching refers to delivering education by means of websites and mobile-technology applications, where constant student attendance at the host campus is not always necessary. This is contrasted with traditional on-campus teaching, which occurs in a classroom. The use of lectures has been reduced while the use of tutorial and lab classes has increased. The new course structure was delivered for the first time in 2014, has run for two semesters, and will continue in 2015. It was found that student performance in the new structure was no worse than that in the older structure. Off-campus students in general welcomed the changes, while on-campus satisfaction did not change from before to after the transition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distance education has developed in the past 25 years or so as a way of supplying education to people who would not have access to local college education facilities. This includes students who live in remote regions, students who lack mobility, and students with full-time jobs. More recently this has been renamed to "online learning". Deakin University in Australia has been teaching freshman engineering physics simultaneously to on-campus and online students since the late1990's. The course is part of an online Bachelor of Engineering major that is accredited by the Institution of Engineers Australia.* In this way Deakin answers the call to provide engineering education "anywhere, anytime."**The course has developed and improved with the available educational technology. Starting with printed study guides, a textbook, CD-ROMS, and snail-mail, and telephone/email correspondence with students, the course has seen the rise of websites, online course notes, discussion boards, streamed video lectures, web-conferencing classes and lab sessions, and online submission of student work. Most recently the on-campus version of the course has shifted from a traditional lecture/tutorial/lab format to a flipped-classroom format. The use of lectures has been reduced while the use of tutorials and practical exercises has increased. Primary learning is now accomplished by watching videos prepared by the lecturer and studying the textbook.Offering this course for several years by distance education made this process considerably easier. Most of the educational "infrastructure" was already in place, and the course's delivery to a non-classroom cohort was already established. Thus many elements of the new structure did not have to be produced from scratch. Improvements to the course website and all the course material has benefited all students, both online and on-campus.The new course structure was delivered for the first time in 2014, has run for two semesters, and will continue in 2015. Student learning and performance is being measured by assignment and exam marks for both on-campus and off-campus students. Students are also surveyed to gauge how well they received the new innovations, especially the video presentations on the lab experiments. It was found that student performance in the new structure was no worse than that in the older structure (average on-campus grades increased 10%), and students in general welcomed the changes. Similar transitions are being implemented in other courses in Deakin's engineering degree program.This presentation will show how physics is taught to online students, outline the changes made to support flipping the on-campus classroom, and how that process benefited the off-campus cohort.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of Deakin’s Course Enhancement Program, The Faculty of Science, Engineering and Built Environment, the School of Engineering and Deakin Learning Futures, combined their resources to produce a series of video presentations to enhance the efficiency of physics practicals in the first-year engineering course. Along the way it was decided the unit also needed a complete overhaul in terms of content layout and delivery. And this was all to be done in a short time frame of a few months before start of Trimester 1, 2014. The end result includes eight professionally developed videos embedded into HTML pages of instruction and information within the CloudDeakin environment, a completely new navigation structure, and templated content pages with links to various resources. The production journey was not without it’s challenges and constraints, but the unit has been delivered, and the student feedback is in.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND : Providing engineering practicals to undergraduates by means of distance education is a significant challenge. The past 30 years have seen the rapid development of the distance education. For many years, Deakin University has offered a full Bachelor of Engineering degree programme via distance education. All first-year students study a unit in physics. This unit includes practicals. Providing practical experiences to students is distance education’s greatest challenge.

PURPOSE : The purpose of this work was to develop the means for off-campus students to complete practical exercises in first-year engineering physics. The solution to the problem also had to comply with accreditation requirements set by Engineers Australia.

METHOD : The long-term solution to the problem was running on-campus lab classes either on weekends or as part of the annual first-year residential school for engineering professional practice. Students work was assessed by means of standard laboratory reports. On-campus marks and off-campus lab marks have been collected and compared over the past 12 years.

RESULTS : The results indicate that the off-campus lab experience is similar to the on-campus experience. Marks for the two cohorts were comparable. Those few students who completed their pracs at home faced and overcame significant challenges.

CONCLUSIONS : We found that performance in their lab reports for off-campus students was similar to that of the on-campus students. Accreditation requirements has shifted the focus from developing activities that students could perform at home to offering timely and efficient on-campus lab classes for off-campus students. Future work will focus on on-campus lab classes in accordance with accreditation requirements and perhaps on-line broadcasts of prac classes for those students who cannot attend lab on-campus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By means of evidence-based practice, this paper describes the residential-school component of an accredited online (distance education) undergraduate engineering program in Australia, with a particular focus on how the residential school program is implemented at freshman year. During these residential schools, activities were organised around the respective engineering courses undertaken by students during the semester. Elements considered suitable and worthwhile for inclusion in residential-school programs included: • In-person engagement with academic lecturers, • Practical and laboratory learning activities, • Presentations and interaction with guest speakers from industry, • Industry-based site visits, • Engagement in sole and group-based learning and assessment activities on campus, and • Social interaction with other students. After running pilot residential schools for two years, it was found that a workable format consisted in a two-week residential experience in the first semester, linked to two key freshman courses, Fundamentals of Technology Management, and Engineering Physics. On-campus and online students’ academic grades were compared for both courses over the years 2005 to 2012. We found that for physics lab, on-campus students’ grades tended to be higher than those for online students, and vice versa for technology management. We also conclude that when carefully designed, residential schools for online students do enhance learning for both online students and their on-campus counterparts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite significant advancements in wireless sensor networks (WSNs), energy conservation in the networks remains one of the most important research challenges. One approach commonly used to prolong the network lifetime is through aggregating data at the cluster heads (CHs). However, there is possibility that the CHs may fail and function incorrectly due to a number of reasons such as power instability. During the failure, the CHs are unable to collect and transfer data correctly. This affects the performance of the WSN. Early detection of failure of CHs will reduce the data loss and provide possible minimal recovery efforts. This paper proposes a self-configurable clustering mechanism to detect the disordered CHs and replace them with other nodes. Simulation results verify the effectiveness of the proposed approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2001-2012 IEEE. Sensing coverage is a fundamental design problem in wireless sensor networks (WSNs). This is because there is always a possibility that the sensor nodes may function incorrectly due to a number of reasons, such as failure, power, or noise instability, which negatively influences the coverage of the WSNs. In order to address this problem, we propose a fuzzy-based self-healing coverage scheme for randomly deployed mobile sensor nodes. The proposed scheme determines the uncovered sensing areas and then select the best mobile nodes to be moved to minimize the coverage hole. In addition, it distributes the sensor nodes uniformly considering Euclidean distance and coverage redundancy among the mobile nodes. We have performed an extensive performance analysis of the proposed scheme. The results of the experiment show that the proposed scheme outperforms the existing approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional fiber networks were created from an organogel system consisting mainly of elongated fibrils by using a nonionic surfactant as an additive. The presence of the surfactant molecules manipulates the network structure by enhancing the mismatch nucleation on the growing fiber tips. Both the fiber network structure and the rheological properties of the material can be finely tuned by changing the surfactant concentration, which provides a robust approach to the engineering of supramolecular soft functional materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In late 2011, first year university students in science, technology, engineering and mathematics (STEM) courses across Australia were invited to participate in the international Interests and Recruitment in Science (IRIS) study. IRIS investigates the influences on young people's decisions to choose university STEM courses and their subsequent experiences of these courses. The study also has a particular focus on the motivations and experiences of young women in courses such as physics, IT and engineering given the low rates of female participation in these fields. Around 3500 students from 30 Australian universities contributed their views on the relative importance of various school and non-school influences on their decisions, as well as insights into their experiences of university STEM courses so far. It is hoped that their contributions will help improve recruitment, retention and gender equity in STEM higher education and careers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND : For many years, Deakin University has delivered an accredited undergraduate engineering course by means of distance education. One of the chief challenges is to provide the necessary practical instruction and experience in engineering to these students. In first-year physics and first-year materials science, off-campus students normally attend on-campus lab classes either on a Saturday or as part of a residential school. However, because some students live either interstate or overseas, it is sometimes impossible for small groups of students to attend an on-campus lab class. PURPOSE : This paper investigates whether web-conferencing software can be an effective means for delivering practical classes to small groups of distance students in first-year physics and also first-year materials. METHOD : Over three semesters in 2012, we employed the Elluminate-Live! software platform to broadcast six lab practicals in first-year physics, and one practical in first-year materials engineering. The students submitted practical reports as did all the other students in each unit. The students in each unit fell into three groups: on-campus students, off-campus students who performed their practicals on-campus, and off-campus students who performed their practicals “virtually” via an Elluminate-Live! session. RESULTS : The trials showed that it is possible to broadcast both physics and materials practical classes by means of web-conferencing software. Report marks of the students performing practicals by this method were comparable to those in the other groups. CONCLUSIONS : Our experience with four initial trials in delivering practical classes over the Internet was encouraging, and showed that the concept will work if done in an effective way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Injury to nerve tissue in the peripheral nervous system (PNS) results in long-term impairment of limb function, dysaesthesia and pain, often with associated psychological effects. Whilst minor injuries can be left to regenerate without intervention and short gaps up to 2 cm can be sutured, larger or more severe injuries commonly require autogenous nerve grafts harvested from elsewhere in the body (usually sensory nerves). Functional recovery is often suboptimal and associated with loss of sensation from the tissue innervated by the harvested nerve. The challenges that persist with nerve repair have resulted in development of nerve guides or conduits from non-neural biological tissues and various polymers to improve the prognosis for the repair of damaged nerves in the PNS. This study describes the design and fabrication of a multimodal controlled pore size nerve regeneration conduit using polylactic acid (PLA) and (PLA):poly(lactic-co-glycolic) acid (PLGA) fibers within a neurotrophin-enriched alginate hydrogel. The nerve repair conduit design consists of two types of PLGA fibers selected specifically for promotion of axonal outgrowth and Schwann cell growth (75:25 for axons; 85:15 for Schwann cells). These aligned fibers are contained within the lumen of a knitted PLA sheath coated with electrospun PLA nanofibers to control pore size. The PLGA guidance fibers within the nerve repair conduit lumen are supported within an alginate hydrogel impregnated with neurotrophic factors (NT-3 or BDNF with LIF, SMDF and MGF-1) to provide neuroprotection, stimulation of axonal growth and Schwann cell migration. The conduit was used to promote repair of transected sciatic nerve in rats over a period of 4 weeks. Over this period, it was observed that over-grooming and self-mutilation (autotomy) of the limb implanted with the conduit was significantly reduced in rats implanted with the full-configuration conduit compared to rats implanted with conduits containing only an alginate hydrogel. This indicates return of some feeling to the limb via the fully-configured conduit. Immunohistochemical analysis of the implanted conduits removed from the rats after the four-week implantation period confirmed the presence of myelinated axons within the conduit and distal to the site of implantation, further supporting that the conduit promoted nerve repair over this period of time. This study describes the design considerations and fabrication of a novel multicomponent, multimodal bio-engineered synthetic conduit for peripheral nerve repair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CONTEXTIn recent years there has been a push in Engineering education to change the basic model fromstudents learning discrete subjects, followed by design projects in third and fourth year, to learningand practicing the design process from the first year. At the same time, there has also been a pushtowards “active learning” (Prince, 2004) as opposed to the more traditional lecture/tutorial/practicalapproach. This year, Deakin University has launched a new design-centred curriculum inundergraduate engineering. Named “Project-Oriented Design-Based Learning” (PODBL), the newcourse structure is running in first and second years. In semester one of first year in the new course,students enrol in one double-unit of design, one unit of maths, and one unit of fundamental science.PURPOSEThis work seeks to determine whether a new fundamental-science unit called “EngineeringFundamentals” fulfils the educational needs of first-year students in the PODBL curriculum. It alsoseeks to determine student perceptions of the new unit.APPROACHThe unit was first offered in semester-one, 2016 to two separate on-campus cohorts and an offcampuscohort. Innovations in this unit include using the CADET model for teaching combinedpractical-tutorial seminars, a shift in lectures from delivering conceptual content to teaching problemsolving and applications (flipping the classroom), and extensive use of online videos and study guidesfor delivering primary content (Cloud Learning). Student learning was assessed by means of problembasedonline quizzes, practical reports, and a final exam. Student perceptions were queried by astandard unit-evaluation system and by a more focussed set of surveys given to students in threeseparate cohorts.RESULTSThe academic results in this unit were compared with those in the previous unit. No substantialdifferences were observed in the marks of this unit in 2016 compared with the 2015 marks of thecorresponding previous physics unit. On-campus students showed more general satisfaction with theunit than did off-campus students. However, not all on-campus students were happy with the flippedclassroommodel.CONCLUSIONSAs the course changes from a traditional approach to a design and project-based approach, it is best ifall units in the course adapt in some way to the new teaching style. Not all units need be completelyproject or design based. In the case of “Engineering Fundamentals,” we believe that due to the widevariety of topics covered, making the entire unit design-based is inappropriate. However, some designand project components can be built into the unit via the practicals. Semester one 2016 was asuccessful first offering of the unit. We recommend that in future years a design/project component beconsidered for the unit’s practicals.