79 resultados para Energy|Materials science

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As highlighted by the recent ChemComm web themed issue on ionic liquids, this field continues to develop beyond the concept of interesting new solvents for application in the greening of the chemical industry. Here some current research trends in the field will be discussed which show that ionic liquids research is still aimed squarely at solving major societal issues by taking advantage of new fundamental understanding of the nature of these salts in their low temperature liquid state. This article discusses current research trends in applications of ionic liquids to energy, materials, and medicines to provide some insight into the directions, motivations, challenges, and successes being achieved with ionic liquids today.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pretty vacancy: The formation energy of Al vacancies in aluminum nitride is decreased by doping with nonmagnetic scandium ions. These vacancies are shown to be the cause of the room-temperature ferromagnetism in the resulting 1D hexagonal nanoprisms of AlN:Sc, a result that is confirmed by first-principles calculations. The doping approach provides a new route to dilute magnetic semiconductor materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional interfacial grain boundary network in a fully austenitic high-manganese steel was studied as a function of all five macroscopic crystallographic parameters (i.e. lattice misorientation and grain boundary plane normal) using electron backscattering diffraction mapping in conjunction with focused ion beam serial sectioning. The relative grain boundary area and energy distributions were strongly influenced by both the grain boundary plane orientation and the lattice misorientation. Grain boundaries terminated by (1 1 1) plane orientations revealed relatively higher populations and lower energies compared with other boundaries. The most frequently observed grain boundaries were {1 1 1} symmetric twist boundaries with the Σ3 misorientation, which also had the lowest energy. On average, the relative areas of different grain boundary types were inversely correlated to their energies. A comparison between the current result and previously reported observations (e.g. high-purity Ni) revealed that polycrystals with the same atomic structure (e.g. face-centered cubic) have very similar grain boundary character and energy distributions. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Titanium-strontia (Ti-SrO) metal matrix composites (MMCs) with 0, 1, 3 and 5% (weight ratio) of SrO have been fabricated through the powder metallurgy method. Increasing the weight ratio of SrO from 0 to 5%, the compressive strength of Ti-SrO MMCs increased from 982 MPa to 1753 MPa, while the ultimate strain decreased from 0.28 to 0.05. The elastic moduli of Ti-3SrO and Ti-5SrO MMCs were higher than those of Ti and Ti-1SrO MMC samples. Additionally, the micro hardness of Ti-SrO MMCs was enhanced from 59% to 190% with the addition of SrO. The enhanced compression strength and micro hardness of Ti-SrO MMCs were attributed to the Hall-Petch effect and the SrO dispersion strengthening in the Ti matrix. MTS assay results demonstrated that Ti-SrO MMCs with 3% SrO exhibited enhanced proliferation of osteoblast-like cells. Alkaline phosphatase activity of cells was not influenced significantly on the surface of Ti-SrO MMCs compared with pure Ti in a term longer than 10 days. The cell morphology on the Ti-SrO MMCs was observed using confocal microscopy and scanning electron microscopy, which confirmed that the Ti-3%SrO MMCs showed optimal in vitro biocompatibility. This journal is © the Partner Organisations 2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

LiFe1-xMnxPO4/C composite materials as cathode materials in Li-ion batteries have been synthesised and their electrochemical properties have been investigated. The samples were synthesised by using high energy ball milling of commercially available precursors (Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4) and then heated at 600°C. The morphology and structure of the heated samples were analysed by means of SEM and X-ray diffraction. The olivine structure of the LiFe1-xMnxPO4/C composite was obtained. A slight shift of the peaks to smaller 2θ angles with the increasing Mn/Fe ratios is observed due to the increase in lattice parameters. The influence of different Mn/Fe ratios on electrical and electrochemical performances were studied by charge-discharge and cyclic voltammetry (CV) testing. The CV curves of the pure LiFePO4 and LiMnPO4 show the expected Fe2+/Fe3+ peak around 3·5 V and Mn2+/Mn3+ peak around 4·1 V, respectively. The addition of manganese increases the discharge voltage from 3·5 to 4·1 V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon coated LiFe0·4Mn0·6PO4 (LiFe0·4Mn0·6PO4/C) was synthesised using high energy ball milling and annealing processes. The starting materials of Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4 were firstly milled for 40 h, and followed by further milling for 5 h after adding glucose solution. The milled sample was heated at different temperatures (550, 600, 650 and 700°C) for 10 h to produce LiFe0·4Mn0·6PO4/C composites. The structure and morphology of the samples were investigated using X-ray diffraction, field emission scanning electron microscopy, and high resolution electron microscopy. The phase of samples annealed at 550 and 600°C mainly consists of olivine type LiFePO4, but a small amount of Fe2P impurity phase is formed in the samples annealed at 650 and 700°C. Electrochemical analysis results show that LiFe0·4Mn0·6PO4/C synthesised at 600°C exhibits the best performance with the initial discharge capacity of 128 mAh g-1 at 0·1 C, and 109 mAh g-1 at 1 C after 500 cycles. The LiFe0·4Mn0·6PO4/C exhibits excellent electrochemical properties for high energy density lithium ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Energy harvesting for wireless sensors and consumer electronic devices can significantly improve reliability and environmental sustainability of the devices. This is achieved by eliminating the dependency of these devices on rechargeable batteries, using clean and/or renewable energy sources. Energy harvesting from various energy sources is widely discussed among researchers and entrepreneurs, including harvesting energy from microscale phenomena. This topic is receiving increasing attention due to the rising numbers of low-power consumer electronic devices and wireless sensors, but also the increasing demand for more convenient and available devices. This article presents a feasibility study for an energy harvesting system based on a human's breathing motion. The system is based on a modified pants belt that is integrated with an array of piezoelectric films and a harvesting circuit. The proposed energy harvester generates electricity from reciprocal abdominal motions of the human subject. In comparison with existing breathing-based energy harvesters, the proposed system allows for safe and convenient energy harvesting with no influence on the natural movement of the lungs. Stomach pressure analysis and measurement, as well as the design and simulations of the proposed harvester, are presented. © 2013 The Author(s).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion resistance and mechanical properties of nanocrystalline aluminium (Al) and Al-20. wt.%Cr alloys, synthesized by high-energy ball milling followed by spark plasma sintering, were investigated. Both alloys exhibited an excellent combination of corrosion resistance and compressive yield strength, which was attributed to the nanocrystalline structure, extended solubility, uniformly distributed fine particles, and homogenous microstructure induced by high-energy ball milling. This work demonstrates the possibilities of developing ultra-high strength Al alloys with excellent corrosion resistance, exploiting conventionally insoluble elements or alloying additions via suitable processing routes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrospun polyvinylidene fluoride (PVDF) nanofiber webs have shown great potential in making mechanical-to-electrical energy conversion devices. Previously, polyvinylidene fluoride (PVDF) nanofibers were produced either using near-field electrospinning (spinning distance < 1 cm) or conventional electrospinning (spinning distance > 8 cm). PVDF fibers produced by an electrospinning at a spinning distance between 1 and 8 cm (referred to as "short-distance" electrospinning in this paper) has received little attention. In this study, we have found that PVDF electrospun in such a distance range can still be fibers, although interfiber connection is formed throughout the web. The interconnected PVDF fibers can have a comparable β crystal phase content and mechanical-to-electrical energy conversion property to those produced by conventional electrospinning. However, the interfiber connection was found to considerably stabilize the fibrous structure during repeated compression and decompression for electrical conversion. More interestingly, the short-distance electrospun PVDF fiber webs have higher delamination resistance and tensile strength than those of PVDF nanofiber webs produced by conventional electrospinning. Short-distance electrospun PVDF nanofibers could be more suitable for the development of robust energy harvesters than conventionally electrospun PVDF nanofibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wavy behaviours of hysteresis energy variation in nanoscale bulk of thermomechanical austenitic NiTi shape memory alloy are reported in ultimate nanoindentation loading cycles. One sharp and two spherical tips were used while two loading-unloading rates were applied. For comparison, another austenitic copper-based shape memory alloy, CuAlNi shape memory alloy, and a metal with no phase transition, elastoplastic Cu, were investigated. In shape memory alloys, the hysteresis energy variation ultimately undergoes a linear decrease with internal wavy fluctuations and no stabilisation was observed. The internal energy fluctuation in these alloys was found dissimilar depending on the loading-unloading rate and the indentation tip geometry. In contrast, there was an absence of both overall and internal variations in hysteresis energy for Cu after the second loading cycle. The underlying physics of these variations is discussed and found to be attributed to both the created dislocations and ratcheting thermal-mechanical behaviour of the phase-transformed volume in shape memory alloys.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Aims to compare the energy embodied in office buildings varying in height from a few storeys to over 50 storeys. The energy embodied in substructure, superstructure and finishes elements was investigated for five Melbourne office buildings of the following heights: 3, 7, 15, 42 and 52 storeys. The two high-rise buildings have approximately 60 percent more energy embodied per unit gross floor area (GFA) in their materials than the low-rise buildings. While building height was found to dictate the amount of energy embodied in the “structure group” elements (upper floors, columns, internal walls, external walls and staircases), other elements such as substructure, roof, windows and finishes seemed uninfluenced.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper aims to consider the embodied energy of building materials in the context of greenhouse gas emission mitigation strategies. Previous practice and research are highlighted where they have the potential to influence design decisions. Latest embodied energy figures are indicated, and the implications of applying these figures to whole buildings are discussed. Several practical examples are given to aid building designers in the selection of building materials for reduced overall life cycle greenhouse gas emissions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This is about the search for 'perpetual motion' and 'free energy'. Conventional science claims that it is impossible, yet generations of inventors have been mesmerised by the promise of an engine that powers itself. The world's reliance on diminishing fossil fuel resources and the associated problems of pollution serve to spur them on. It showcases a number of dedicated, sometimes eccentric, and always obsessive individuals who have devoted their lives to this quest.