29 resultados para Diffuse coplanar surface barrier discharge

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The contact load-bearing response and surface damage resistance of multilayered hierarchical structured (MHSed) titanium were determined and compared to monolithic nanostructured titanium. The MHS structure was formed by combining cryorolling with a subsequent Surface Mechanical Attrition Treatment (SMAT) producing a surface structure consisted of an outer amorphous layer containing nanocrystals, an inner nanostructured layer and finally an ultra-fine grained core. The combination of a hard outer layer, a gradual transition layer and a compliant core results in reduced indentation depth, but a deeper and more diffuse sub-surface plastic deformation zone, compared to the monolithic nanostructured Ti. The redistribution of surface loading between the successive layers in the MHS Ti resulted in the suppression of cracking, whereas the monolithic nanograined (NG) Ti exhibited sub-surface cracks at the boundary of the plastic strain field. Finite element models with discrete layers and mechanically graded layersrepresenting the MHS system confirmed the absence of cracking and revealed a 38% decrease in shear stress in the sub-surface plastic strain field, compared to the monolithic NG Ti. Further, the mechanical gradation achieves a more gradual stress distribution which mitigates the interface failure and increases the interfacial toughness, thus providing strong resistance to loading damage. © 2014 Elsevier Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Surface engineering in solids has become an important field in materials science. Glow-discharge optical emission spectrometry (GD-OES) has proven to be a powerful tool for the rapid analysis of elements in the surface of solids. One may employ GD-OES to determine quantitatively the bulk concentration of elements in a sample, and elemental concentrations as a function of depth. Presented here is an overview of GD-OES analysis and an application to aluminium.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

For various applications it is necessary to know not only global solar radiation values, but also the diffuse and beam components. Because often only global values are available, there have been several models developed to establish correlations between the diffuse fraction and various predictors. These typically include the clearness index, but also may include the solar angle, temperature and humidity. The clearness index is the proportion of extraterrestrial radiation reaching a location, where the extraterrestrial value used in the calculation varies with latitude and time of year. These correlations have been developed using data principally from latitudes greater than 40°, often using only data from a few locations and with few exceptions have not used solar altitude as a predictor. Generally the data consist of hourly integrated values. A model has been developed using hourly data from a weather station set up at Deakin University, Geelong. Another model has also been developed for 15 minute data values in order to ascertain if the smoothing generated by using hourly data makes a significant difference to overall results. The construction of such models has been investigated, enabling an extension to the research, inclusive of other stations, to be performed systematically. A final investigation was carried out, using data from other Australian locations, to explain some of the considerable scatter by adding apparent solar time as a predictor, which proved to be significantly better than solar altitude.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Glow-Discharge Optical Emission Spectrometry (GD-OES) is a powerful technique for the rapid analysis of elements in a solid surface as a function of depth. DC-GD-OES allows depth profiling on electrically conductive surfaces only, and has proven to be difficult for the analysis of insulating layers, such as oxides. However, the technique of radio-frequency (RF) GD-OES has the advantage of being able to depth profile through multiple layers, both conducting and insulating. In this work, a LECO GDS- 850A spectrometer was calibrated for aluminium, oxygen, and other elements, with the RF source installed. A quantitative depth profile for a sample of tempered aluminium alloy 7475 is presented and compared with earlier work[1,2].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction:
Any illness that is serious enough to require admission to the critical care unit will intensify the physical and psychological effects that the patient and their significant others experience. Hence, the discharge needs of patients admitted to critical care are unquestionably complex, diverse and dynamic.

Methods:
Utilising an exploratory descriptive approach 502 critical care nurses, identified from the Australian College of Critical Care Nursing (ACCCN) (Victoria) database were invited to participate in this study. A 31-item questionnaire was developed and distributed. A total of 218 eligible participants completed the survey. One-to-one semi-structured interviews with 13 Victorian critical care nurses were also conducted.

Results:
Participants reported that a lack of time was a barrier to discharge planning. Communication however, could enhance or impede the discharge planning process in critical care. Participants considered that the critical pathway, used in the care of cardiothoracic patients, did assist with communication of discharge planning processes, hence enhancing the process.

Conclusions:
While these findings provide some understanding of the factors that enhanced or impeded critical care nurses’ discharge planning practices further research is indicated. The findings reported here may, however, provide a starting point for improving the discharge planning process in critical care.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper attempts to study the propagating characteristics of acoustic signals emitted from the breakdown of air using time domain numerical model. Acoustic emissions are produced by high voltage faults such as partial discharge and surface discharge. Study of such emissions has become popular among researchers because of the promising correlation between partial and surface discharges and its byproduct, acoustic signal emission. In this paper, propagation characteristics of acoustic signals are studied using finite difference time domain (FDTD) method. Multiple monitoring points are placed within a designated computation space at different distance away from a source.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glow-discharge optical emission spectrometry (GD-OES) is a powerful tool for the rapid analysis of elements in the surface of solids. One may employ GD-OES to determine quantitatively the bulk concentration of elements in a sample. With further calibration, one may also obtain elemental concentrations as a function of depth into the sample. This allows depth profiling on a host of advanced materials: treated metals, coated metals and other materials, multi-layers, painted surfaces, hard samples coated with polymers, thin films, and many others.

A consortium of institutions in Victoria, led by Deakin University, has purchased a new glow-discharge optical emission spectrometer. This instrument has the ability to perform elemental depth profiling on a wide range of materials. This technique, the first of its kind in Australia, is of particular interest to those working on metals, ceramics, glasses, coatings, semi-conductors, and multi-layers. We present here an overview of depth profiling by GD-OES and some examples of its use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Submicrometer-scale periodic structures consisting of parallel grooves were prepared on azobenzene-containing multiarm star polymer films by laser interference. The wetting characteristics on the patterned surfaces were studied by contact angle measurements. Macroscopic distortion of water drops was found on such small-scale surface structures, and the contact angles measured from the direction parallel to the grooves were larger than those measured from the perpendicular direction. A thermodynamic model was developed to calculate the change in the surface free energy as a function of the instantaneous contact angle when the three-phase contact line (TPCL) moves along the two orthogonal directions. It was found that the fluctuations, i.e., energy barriers, on the energy versus contact angle curves are crucial to the analysis of wetting anisotropy and contact angle hysteresis. The calculated advancing and receding contact angles from the energy versus contact angle curves were in good agreement with those measured experimentally. Furthermore, with the groove depth increasing, both the degree of wetting anisotropy and the contact angle hysteresis perpendicular to the grooves increased as a result of the increase in the energy barrier. The theoretical critical value of the groove depth, above which the anisotropic wetting appears, was determined to be 16 nm for the grooved surface with a wavelength of 396 nm. On the other hand, the effect of the groove wavelength on the contact angle hysteresis perpendicular to the grooves was also interpreted on the basis of the thermodynamic model. That is, with the wavelength decreasing, the contact angle hysteresis increased due to the increase in the number of energy barriers. These results may provide theoretical evidence for the design and application of anisotropic wetting surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the second phase of a research project aimed at the development of an environmentally friendly noise barrier for urban freeways, also known as KMAK (Krezel and McManus, 2007). The concrete barrier, which has some unique capabilities to mitigate transportation noise, is made from recycled concrete (RC) aggregate and industrial by-products such as fly ash and reclaimed water. The current developmental work expands on a research project that resulted in a two-layer (2L) concrete barrier. Two prototypes of the 2L barrier were produced, followed by extensive acoustic testing and a number of simulations where standard timber and/or concrete barriers were substituted with KMAK barrier (Krezel et al, 2004). Current research investigates a variety of architectural finishes applied to the original KMAK barrier with the aim of improving its visual appearance and also fine-tuning its acoustic performance. The new three-layer (3L) barrier optimises sound absorption in a frequency range characteristic to that of transportation noise, especially road traffic noise. Three major aspects related to the development of architectural finishes were considered; environmentally responsible materials, surface features and production methods. The light-weight material used in the architectural finish is based on ordinary Portland cement (OPC) and uses very fine fraction of RC aggregate. The manufacturing process of the 3L barrier was tested in a commercial setting and two sets of prototype barrier were cast. An innovative, cost effective method of applying pattern and perforation to the surface of architectural finish was also developed and tested. The findings of the current investigation demonstrate that there is a positive correlation between surface features, percentage of perforation as well as depth of the architectural layer and increased potential of the 3L barrier to mitigate transportation noise. On average, the addition of perforated architectural finish contributes to 20% increase in sound absorption. The preliminary results also show that the sound absorbency of the 3L barrier can be better controlled and tuned to specific noise frequency. The visual appearance has been significantly improved with the addition of the architectural finish, which makes the barrier an attractive, feasible and viable alternative to road barriers made from standard concrete or timber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The corrosion inhibition mechanisms of new cerium and lanthanum cinnamate based compounds have been investigated through the surface characterisation of the steel exposed to NaCl solution of neutral pH. Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to identify the nature of the deposits on the metal surface and demonstrated that after accelerated tests the corrosion product commonly observed on steel (i.e. lepidocrocite, γ-FeOOH) is absent. The cinnamate species were clearly present on the steel surface upon exposure to NaCl solution for short periods and appeared to coordinate through the iron. At longer times the Rare Earth Metal (REM) oxyhydroxide species are proposed to form as identified through the bands in the 1400–1500 cm−1 region. These latter bands have been previously assigned to carbonate species adsorbed onto REM oxyhydroxide surfaces. The protection mechanism appears to involve the adsorption of the REM–cinnamate complex followed by the hydrolysis of the REM to form a barrier oxide on the steel surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports on the second phase of a research project aimed at the development of an environmentally friendly noise barrier for urban freeways, also known as KMAK [1]. The concrete barrier, which has some unique capabilities to mitigate transportation noise, is made from recycled concrete (RC) aggregate and industrial by-products such as fly ash and reclaimed water. The current developmental work expands on a research project that resulted in a two-layer (2L) concrete barrier. Two prototypes of the 2L barrier were produced, followed by extensive acoustic testing and a number of simulations where standard timber and/or concrete barriers were substituted with KMAK barrier [2]. Current research investigates a variety of architectural finishes applied to the original KMAK barrier with the aim of improving its visual appearance and also fine-tuning its acoustic performance. The new three-layer (3L) barrier optimizes sound absorption in a frequency range characteristic similar to that of transportation noise, especially road traffic noise. Three major aspects related to the development of architectural finishes were considered; environmentally responsible materials, surface features, and production methods. The findings of the current investigation demonstrate that there is a positive correlation between surface features, percentage of perforation as well as depth of the architectural layer, and increased potential of the 3L barrier to mitigate transportation noise. On average, the addition of perforated architectural finish contributes to a 20% increase in sound absorption. The preliminary results also show that the sound absorbency of the 3L barrier can be better controlled and tuned to specific noise frequency than the 2L type. The visual appearance has been significantly improved with the addition of the architectural finish, which makes the barrier an attractive, feasible, and viable alternative to road barriers made from standard concrete or timber.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nutrient discharge into coastal areas, such as the Great Barrier Reef can result in the degradation of coastal ecosystems. For example, excess nitrogen and phosphorus can damage corals through inducing algal bloom and subsequent shading. Excessive phosphorus can further weaken coral skeletons making them susceptible to damage. Land based industries such as aquaculture can contribute to such problems. This study set out to develop a system whereby water from aquaculture can be constantly reused resulting in minimized waste discharge. A three-stage filtration system utilizing floating media and activated carbon was designed to harness bacterial processes that could reduce both particulate and dissolved compounds to the extent whereby approximately 100% reuse of the wastewater became possible. This involved efficient and effective particulate and biological removal mechanisms in both aerobic and anaerobic zones of the filtration system. This design reduced dissolved nitrogen levels by up to 70% and maintained low phosphorus levels, which allowed the reuse of water for the successful culture of barramundi with a survival rate of 97% over 25 days. This pilot scale study demonstrated the potential of reusing aquaculture wastewater from the viewpoint of reducing nutrient input into coastal environments. Future research will refine these processes and assess the performance of the system at several commercial scale applications.