52 resultados para Covalent immobilization

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-D-galactosidase (EC 3.2.1.23) from Kluyveromyces marxianus YW-1, an isolate from whey, has been studied in terms of cell disruption to liberate the useful enzyme. The enzyme produced in a bioreactor on a wheat bran medium has been successfully immobilized with a view to developing a commercially usable technology for lactose hydrolysis in the food industry. Three chemical and three physical methods of cell disruption were tested and a method of grinding with river sand was found to give highest enzyme activity (720 U). The enzyme was covalently immobilized on gelatin. Immobilized enzyme had optimum pH and temperature of 7.0 and 40 °C, respectively and was found to give 49% hydrolysis of lactose in milk after 4 h of incubation. The immobilized enzyme was used for eight hydrolysis batches without appreciable loss in activity. The retention of high catalytic activity compared with the losses experienced with several previously reported immobilized versions of the enzyme is significant. The method of immobilization is simple, effective, and can be used for the immobilization of other enzymes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Naringinase (EC 3.2.1.40) from Penicillium sp was immobilized by covalent binding to woodchips to improve its catalytic activity. The immobilization of naringinase on glutaraldehyde-coated woodchips (600 mg woodchips, 10 U naringinase, 45 °C, pH 4.0 and 12h) through 1% glutaraldehyde cross-linking was optimized. The pH-activity curve of the immobilized enzyme shifted toward a lower pH compared with that of the soluble enzyme. The immobilization caused a marked increase in thermal stability of the enzyme. The immobilized naringinase was stable during storage at 4 °C. No loss of activity was observed when the immobilized enzyme was used for seven consecutive cycles of operations. The efficiency of immobilization was 120%, while soluble naringinase afforded 82% efficacy for the hydrolysis of standard naringin under optimal conditions. Its applicability for debittering kinnow mandarin juice afforded 76% debittering efficiency. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smooth polymerized surfaces, suitable for biochemical and biomedical applications, were deposited using a modified plasma enhanced chemical vapour deposition method with acetylene as a reaction precursor. Horseradish peroxidase (HRP) activity assays showed that the protein immobilized on the plasma polymerized surfaces maintained its biological function for a much longer period of time compared to that on uncoated surfaces. The kinetics of HRP attachment to the plasma polymerized surfaces were analyzed using quartz crystal microbalance with dissipation analysis. Spectroscopic ellipsometry and attenuated total reflection Fourier transform infrared spectroscopy were used to determine the thickness and the quantity of the attached protein. The results showed that the plasma polymerized surfaces provided a high density of attachment sites to covalently immobilize a dense monolayer of proteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we report the functionalization of silica nanoparticles with highly photoreactive phenyl azido groups and their utility as a negatively charged building block for layer-by-layer (LbL) electrostatic assembly to produce a stable silica nanoparticle coating. Azido-terminated silica nanoparticles were prepared by the functionalization of bare silica nanoparticles with 3-aminopropyltrimethoxysilane followed by the reaction with 4-azidobenzoic acid. The azido functionalization was confirmed by FTIR and XPS. Poly(allylamine hydrochloride) was also grafted with phenyl azido groups and used as photoreactive polycations for LbL assembly. For the photoreactive silica nanoparticle/polycation multilayers, UV irradiation can induce the covalent cross-linking within the multilayers as well as the anchoring of the multilayer film onto the organic substrate, through azido photochemical reactions including C–H insertion/abstraction reactions with surrounding molecules and dimerization of azido groups. Our results show that the stability of the silica nanoparticle/polycation multilayer film was greatly improved after UV irradiation. Combined with a fluoroalkylsilane post-treatment, the photoreactive LbL multilayers were used as a coating for superhydrophobic modification of cotton fabrics. Herein the LbL assembly method enables us to tailor the number of the coated silica nanoparticles through the assembly cycles. The superhydrophobicity of cotton fabrics was durable against acids, bases, and organic solvents, as well as repeated machine wash. Because of the unique azido photochemistry, the approach used here to anchor silica nanoparticles is applicable to almost any organic substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A strategy for a fast (ca. 20 min), specific, electrochemical immunoassay for the cardiac biomarker creatine kinase (CK) and the human cytokine interleukin 10 (IL10) has been developed in this paper. The polyaniline modified gold surface formed from electrochemical reduction of diazonium salt supplies a solid substrate to link the activated carboxylic acid groups from the antibodies, which were labelled with ferrocene. The direct electrochemistry of ferrocene allows the analysis of protein markers with good sensitivity. The creatine kinase sensor demonstrates limit of detection of 0.5 pg mL−1 in a physiological Krebs-Henseleit solution. The anti-IL10 antibody retained fluorescence activity after further coupling to ferrocene and covalent immobilization on to a gold electrode, showing a linear detection range for IL-10 from 0.001 ng mL−1 to 50 ng mL−1 in PBS. We attribute the high sensitivity to the well-controlled modified surface which results in end–on antibodies that can specifically capture the antigen with ease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targetsof reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

α-l-Rhamnosidase (EC 3.2.1.40) is an enzyme that catalyzes the cleavage of terminal rhamnoside groups from naringin to prunin and rhamnose. In this study, a His-tag was genetically attached to the rhamnosidase gene ramA from Clostridium stercorarium to facilitate its purification from Escherichia coli BL21 (DE3) cells containing the pET-21d/ramA plasmid. Immobilized metal-chelate affinity chromatography (IMAC) resulted in one-step purification of N-terminally His-tagged recombinant rhamnosidase (N-His-CsRamA) which was immobilized in Ca2+ alginate (3%) beads. The optimum pH levels of the free and immobilized recombinant rhamnosidase were found to be 6.0 and 7.5, and the optimum temperature 55 and 60 °C respectively. At 50 °C, the free enzyme was relatively stable and exhibited a less than 50% reduction in residual activity after 180 min of incubation. The free and immobilized enzymes achieved 76% and 67% hydrolysis of the naringin in Kinnow juice respectively. Immobilization of recombinant rhamnosidase enabled its reutilization up to 9 hydrolysis batches without an appreciable loss in activity. This result indicated that the His-tagged thermostable rhamnosidase could be prepared as described and may serve to illustrate an economical and commercially viable process for industrial application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recombinant α-L Rhamnosidase has several potential applications in citrus fruit juice processing industries. Immobilized recombinant α-L Rhamnosidase further provides an added advantage to this industrially important enzyme. Various techniques have been used to immobilize native rhamnosidase from fungal origin and applications were explored in great details by several workers. (Puri et al., 1996, 2000, 2001)

A recombinant rhamnosidase from a bacterial source was expressed in E.coli has been immobilized in calcium alginate beads (entrapment method). A batch bioreactor was created for the hydrolysis of naringin using immobilized recombinant α-L Rhamnosidase under shaking and stationary conditions and it was found to hydrolyze naringin effectively. The system was efficient to hydrolyze narigin under shaking conditions and was operationally stable up to 9 days. A high percent hydrolysis of naringin was achieved at pH 7.5 and 60˚C by immobilized rhamnosidase. Entrapped rhamnosidase was able to hydrolyze naringin content in kinnow juice repeatedly and this feature makes this technique economically suitable for debittering of fruit juices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of enzyme electrodes using self-assembled monolayers (SAMs) has attracted considerable interest because of the spatial control over the enzyme immobilization. A model system of glucose oxidase covalently bound to a gold electrode modified with a SAM of 3-mercaptopropionic acid was investigated with regard to the effect of fabrication variables such as the surface topography of the underlying gold electrode, the conditions during covalent attachment of the enzyme and the buffer used. The resultant monolayer enzyme electrodes have excellent sensitivity and dynamic range which can easily be adjusted by controlling the amount of enzyme immobilized. The major drawback of such electrodes is the response which is limited by the kinetics of the enzyme rather than mass transport of substrates. Approaches to bringing such enzyme electrodes into the mass transport limiting regime by exploiting direct electron transfer between the enzyme and the electrode are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background

Chemical immobilization of Weddell seals (Leptonychotes weddellii) has previously been, for the most part, problematic and this has been mainly attributed to the type of immobilizing agent used. In addition to individual sensitivity, physiological status may play an important role. We investigated the use of the intravenous administration of a 1:1 mixture of tiletamine and zolazepam (Telazol®) to immobilize adult females at different points during a physiologically demanding 5–6 week lactation period. We also compared performance between IV and IM injection of the same mixture.
Results

The tiletamine:zolazepam mixture administered intravenously was an effective method for immobilization with no fatalities or pronounced apnoeas in 106 procedures; however, there was a 25 % (one animal in four) mortality rate with intramuscular administration. Induction time was slightly longer for females at the end of lactation (54.9 ± 2.3 seconds) than at post-parturition (48.2 ± 2.9 seconds). In addition, the number of previous captures had a positive effect on induction time. There was no evidence for effects due to age, condition (total body lipid), stage of lactation or number of captures on recovery time.
Conclusion

We suggest that intravenous administration of tiletamine and zolazepam is an effective and safe immobilizing agent for female Weddell seals. Although individual traits could not explain variation in recovery time, we suggest careful monitoring of recovery times during longitudinal studies (> 2 captures). We show that physiological pressures do not substantially affect response to chemical immobilization with this mixture; however, consideration must be taken for differences that may exist for immobilization of adult males and juveniles. Nevertheless, we recommend a mass-specific dose of 0.50 – 0.65 mg/kg for future procedures with adult female Weddell seals and a starting dose of 0.50 mg/kg for other age classes and other phocid seals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quantification of programmed and accidental cell death provides useful end-points for the anticancer drug efficacy assessment. Cell death is, however, a stochastic process. Therefore, the opportunity to dynamically quantify individual cellular states is advantageous over the commonly employed static, end-point assays. In this work, we describe the development and application of a microfabricated, dielectrophoretic (DEP) cell immobilization platform for the realtime analysis of cancer drug-induced cytotoxicity. Microelectrode arrays were designed to generate weak electro-thermal vortices that support efficient drug mixing and rapid cell immobilization at the delta-shape regions of strong electric field formed between the opposite microelectrodes. We applied this technology to the dynamic analysis of hematopoietic tumor cells that represent a particular challenge for real-time imaging due to their dislodgement during image acquisition. The present study was designed to provide a comprehensive mechanistic rationale for accelerated cell-based assays on DEP chips using real-time labeling with cell permeability markers. In this context, we provide data on the complex behavior of viable vs dying cells in the DEP fields and probe the effects of DEP fields upon cell responses to anticancer drugs and overall bioassay performance. Results indicate that simple DEP cell immobilization technology can be readily applied for the dynamic analysis of investigational drugs in hematopoietic cancer cells. This ability is of particular importance in studying the outcome of patient derived cancer cells, when exposed to therapeutic drugs, as these cells are often rare and difficult to collect, purify and immobilize.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-pressure ion exchange of small-pore zeolite K-natrolite allows immobilization of nominally non-exchangeable aliovalent cations such as trivalent europium. A sample exchanged at 3.0(1) GPa and 250 °C contains about 4.7 EuIII ions per unit cell, which is equivalent to over 90 % of the K+ cations being exchanged.