11 resultados para Converse Lyapunov theorem

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study some properties of finite-time stable stochastic nonlinear systems. We begin by showing several continuous dependence theorems of solutions on initial values under some conditions on the coefficients of stochastic systems. We then derive some regular properties of its stochastic settling time for a finite-time stable stochastic nonlinear system. We show continuity, positive definiteness and boundedness of the expected stochastic settling time under appropriate conditions. Finally, a Lyapunov function is constructed by making use of the expectation of the stochastic settling time, and the infinitesimal generator of the stochastic system defined on the Lyapunov function is also given, and hence resulting in a converse Lyapunov theorem of finite-time stochastic stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this comment, we will point out some errors existing in Chen and Jiao (2010) from definitions to the proof of the main result, where the authors discussed the finite-time stability of stochastic nonlinear systems and proved a Lyapunov theorem on the finitetime stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper focuses on the finite-time stability and stabilization designs of stochastic nonlinear systems. We first present and discuss a definition on the finite-time stability in probability of stochastic nonlinear systems, then we introduce a stochastic Lyapunov theorem on the finite-time stability, which has been established by Yin et al. We also employ this theorem to design a continuous state feedback controller that makes a class of stochastic nonlinear systems to be stable in finite time. An example and a simulation are given to illustrate the theoretical analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the problem of finite-time stabilization for some nonlinear stochastic systems. Based on the stochastic Lyapunov theorem on finite-time stability that has been established by the authors in the paper, it is proven that Euler-type stochastic nonlinear systems can be finite-time stabilized via a family of continuous feedback controllers. Using the technique of adding a power integrator, a continuous, global state feedback controller is constructed to stabilize in finite time a large class of two-dimensional lower-triangular stochastic nonlinear systems. Also, for a class of three-dimensional lower-triangular stochastic nonlinear systems, a recursive design scheme of finite-time stabilization is given by developing the technique of adding a power integrator and constructing a continuous feedback controller. Finally, a simulation example is given to illustrate the theoretical results. © 2014 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12]. Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete. It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous dynamical systems may be extended. A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability. Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied. The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system. The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is concerned with leader-follower finite-time consensus control of multi-agent networks with input disturbances. Terminal sliding mode control scheme is used to design the distributed control law. A new terminal sliding mode surface is proposed to guarantee finite-time consensus under fixed topology, with the common assumption that the position and the velocity of the active leader is known to its neighbors only. By using the finite-time Lyapunov stability theorem, it is shown that if the directed graph of the network has a directed spanning tree, then the terminal sliding mode control law can guarantee finite-time consensus even under the assumption that the time-varying control input of the active leader is unknown to any follower.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n-dimensional fuzzy sets are an extension of fuzzy sets that includes interval-valued fuzzy sets and interval-valued Atanassov intuitionistic fuzzy sets. The membership values of n-dimensional fuzzy sets are n-tuples of real numbers in the unit interval [0,1], called n-dimensional intervals, ordered in increasing order. The main idea in n-dimensional fuzzy sets is to consider several uncertainty levels in the memberships degrees. Triangular norms have played an important role in fuzzy sets theory, in the narrow as in the broad sense. So it is reasonable to extend this fundamental notion for n-dimensional intervals. In interval-valued fuzzy theory, interval-valued t-norms are related with t-norms via the notion of t-representability. A characterization of t-representable interval-valued t-norms is given in term of inclusion monotonicity. In this paper we generalize the notion of t-representability for n-dimensional t-norms and provide a characterization theorem for that class of n-dimensional t-norms. © 2011 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of exponential stability analysis of two-dimensional (2D) linearcontinuous-time systems with directional time-varying delays. An abstract Lyapunov-like theorem whichensures that a 2D linear system with delays is exponentially stable for a prescribed decay rate is exploitedfor the first time. In light of the abstract theorem, and by utilizing new 2D weighted integral inequalitiesproposed in this paper, new delay-dependent exponential stability conditions are derived in terms oftractable matrix inequalities which can be solved by various computational tools to obtain maximumallowable bound of delays and exponential decay rate. Two numerical examples are given to illustrate theeffectiveness of the obtained results.