8 resultados para Chemical screening

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plants are an important source for medicinal compounds. Chemical screening and selection is critical for identification of compounds of interest. Ocimum basilicum (Basil) is a rich source of polyphenolics and exhibits high diversity, therefore bioprospecting of a suitable cultivar is a necessity. This study reports on the development of a true to type novel "in vitro system" and its comparison with a conventional system for screening and selection of cultivars for high total phenolics, individual polyphenolics, and antioxidant content. We have shown for the first time using online acidic potassium permanganate chemiluminescence that extracts from Ocimum basilicum showed antioxidant potential. The current study identified the cultivar specific composition of polyphenolics and their antioxidant properties. Further, a distinct relationship between plant morphotype and polyphenolic content was also found. Of the 15 cultivars examined, "Holy Green", "Red Rubin", and "Basil Genovese" were identified as high polyphenolic producing cultivars while "Subja" was determined to be a low producer. The "in vitro system" enabled differentiation of the cultivars in their morphology, polyphenolic content, and antioxidant activity and is a cheap and efficient method for bioprospecting studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A sequential injection analysis procedure with dual-reagent chemiluminescence detection was applied to the screening of street drug seizure samples for the presence of heroin. The chemiluminescence reagents (acidic potassium permanganate and tris(2,2′-bipyridine)ruthenium(III)) were aspirated from either side of a sample aliquot that was sufficiently large to prevent interdispersion of the reagent zones, and therefore two different chemical reactions could be performed simultaneously at either end of the sample zone. The presence of heroin in seizure samples was indicated by a strong response with the tris(2,2′-bipyridine)ruthenium(III) reagent and confirmed by a significant increase in the response with the permanganate reagent when the sample was treated with sodium hydroxide to hydrolyse the heroin to morphine. Nicomorphine (a morphine-derived pharmaceutical) was synthesised and tested under the same conditions. The responses with the permanganate reagent were similar to those for heroin, which supports the proposed chemical basis for the test. However, the responses with tris(2,2′-bipyridine)ruthenium(III) were far lower for nicomorphine than heroin (approximately 5-fold for the samples that had not been hydrolysed).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The health benefits of antioxidant-rich ‘Mediterranean’ type diets high in grain, olives and red wine are well recognised. Since these foodstuffs consist of a complex matrix of chemical components, to date, the primary challenge lies in prioritising and isolating molecules for a physiologically relevant cell culture assay to assess their human health benefits. Currently, the most common approach requires arduous sample fractionation into smaller ‘crude’ extracts, followed by costly cell culture assays, with the bioactive identified only after a positive response in the cell. The work presented within this poster demonstrates the potential for an acidified potassium permanganate chemiluminescence detector as a much simpler screening tool to identify the best bioactive candidates from a complex sample matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The boundary films generated on a series of inorganic compounds, typical of native films on metal and ceramic surfaces, when exposed to various ionic liquids (ILs) based on the trihexyl(tetradecyl)phosphonium cation have been characterized using multinuclear solid-state NMR. The NMR results indicate that SiO2 and Mg(OH)2 interact strongly with the anion and cation of each IL through a mechanism of adsorption of the anion and subsequent close proximity of the cation in a surface double layer (as observed through 1H−29Si cross polarization experiments). In contrast, Al2O3, MgO, ZnO, and ZrO2 appear less active, strongly suggesting the necessity of hydroxylated surface groups in order to enhance the generation of these interfacial films. Using solid-state NMR to characterize such interfaces not only has the potential to elucidate mechanisms of wear resistance and corrosion protection via ILs, but is also likely to allow their rapid screening for such durability applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dataset comprises morphological image-based data of the cross and longitudinal sections of the powder particles and fibres of the bamboo plant, gathered using the Scanning Electron Microscope (SED). The morophology of the treated and untreated samples was compared before and after several chemical treatments. The diameter of the fibre and porous structure was measured, giving an indication of particle size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The traditional drug discovery pipeline for the identification and development of compounds that selectively target specific molecules to ameliorate disease remains a major focus for medical research. However, the zebrafish is increasingly providing alternative strategies for various components of this pipeline. Zebrafish and their embryos are small, easily accessible and relatively low cost, making them applicable to high-throughput, small molecule screening. Zebrafish can also be manipulated by a range of forward and reverse genetics techniques to facilitate gene discovery and functional studies. Moreover, their physiological and developmental complexity provides accurate models of human disease to underpin mechanism of action and in vivo validation studies. Finally, several of these biological characteristics make zebrafish eminently suitable for toxicity testing, including eco-toxicology. Here we review the application of zebrafish to preclinical drug development and toxicity testing, including recent advances in mutant generation, drug screening and toxicology that serve to further enhance the capabilities of this valuable model organism in drug discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two-dimensional (2D) hexagonal boron nitride (BN) nanosheets are excellent dielectric substrate for graphene, molybdenum disulfide, and many other 2D nanomaterial-based electronic and photonic devices. To optimize the performance of these 2D devices, it is essential to understand the dielectric screening properties of BN nanosheets as a function of the thickness. Here, electric force microscopy along with theoretical calculations based on both state-of-the-art first-principles calculations with van der Waals interactions under consideration, and nonlinear Thomas-Fermi theory models are used to investigate the dielectric screening in high-quality BN nanosheets of different thicknesses. It is found that atomically thin BN nanosheets are less effective in electric field screening, but the screening capability of BN shows a relatively weak dependence on the layer thickness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a substantial need to develop new medicines against parasitic diseases via public-private partnerships. Based on high throughput phenotypic screens of largely protozoal pathogens and bacteria, the Medicines for Malaria Venture (MMV) has recently assembled an open-access 'Pathogen Box' containing 400 well-curated chemical compounds. In the present study, we tested these compounds for activity against parasitic stages of the nematode Haemonchus contortus (barber's pole worm). In an optimised, whole-organism screening assay, using exsheathed third-stage (xL3) and fourth-stage (L4) larvae, we measured the inhibition of larval motility, growth and development of H. contortus. We also studied the effect of the 'hit' compound on mitochondrial function by measuring oxygen consumption. Among the 400 Pathogen Box compounds, we identified one chemical, called tolfenpyrad (compound identification code: MMV688934) that reproducibly inhibits xL3 motility as well as L4 motility, growth and development, with IC50 values ranging between 0.02 and 3 μM. An assessment of mitochondrial function showed that xL3s treated with tolfenpyrad consumed significantly less oxygen than untreated xL3s, which was consistent with specific inhibition of complex I of the respiratory electron transport chain in arthropods. Given that tolfenpyrad was developed as a pesticide and has already been tested for absorption, distribution, excretion, biotransformation, toxicity and metabolism, it shows considerable promise for hit-to-lead optimisation and/or repurposing for use against H. contortus and other parasitic nematodes. Future work should assess its activity against hookworms and other pathogens that cause neglected tropical diseases.