171 resultados para Cameron and Whetton

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Drawing on Cameron and Quinn’s organisational cultures typology that defines four types of organisational culture (i.e., clan, adhocracy, market, and hierarchy), and Daniel et al.’s four-stage model of e-commerce adoption, this paper empirically examines the influence of different organisational cultures on e-commerce adoption maturity in small and medium-sized enterprises (SMEs) in Sri Lanka. The result indicates a positive correlation between adhocracy culture and e-commerce adoption. However, those firms with hierarchy cultural characteristics indicate a negative correlation in relation to e-commerce adoption. The organisational culture differences explain these issues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study examined the gene expression and cellular localization of the creatine transporter (CreaT) protein in rat skeletal muscle. Soleus (SOL) and red (RG) and white gastrocnemius (WG) muscles were analyzed for CreaT mRNA, CreaT protein, and total creatine (TCr) content. Cellular location of the CreaT protein was visualized with immunohistochemical analysis of muscle cross sections. TCr was higher (P <= 0.05) in WG than in both RG and SOL, and was higher in RG than in SOL. Total CreaT protein content was greater (P <= 0.05) in SOL and RG than in WG. Two bands (55 and 70 kDa) of the CreaT protein were found in all muscle types. Both the 55-kDa (CreaT-55) and the 70-kDa (CreaT-70) bands were present in greater (P <= 0.05) amounts in SOL and RG than in WG. SOL and RG had a greater amount (P <= 0.05) of CreaT-55 than CreaT-70. Immunohistochemical analysis revealed that the CreaT was mainly associated with the sarcolemmal membrane in all muscle types. CreaT mRNA expression per microgram of total RNA was similar across the three muscle types. These data indicate that rat SOL and RG have an enhanced potential to transport Cr compared with WG, despite a higher TCr in the latter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many athletes report using a wide range of special sports foods and supplements. In the present study of 77 elite Australian swimmers, 99% of those surveyed reported the use of these special preparations, with 94% of swimmers reporting the use of non-food supplements. The most popular dietary supplements were vitamin or mineral supplements (used by 94% of the group), herbal preparations (61%), and creatine (31%). Eighty-seven percent of swimmers reported using a sports drink or other energy-providing sports food. In total, 207 different products were reported in this survey. Sports supplements, particularly supplements presented as pills or other non-food form, are poorly regulated in most countries, with little assurance of quality control. The risk of an inadvertent "positive doping test" through the use of sports supplements or sports foods is a small but real problem facing athletes who compete in events governed by anti-doping rules. The elite swimmers in this survey reported that information about the "doping safety" of supplements was important and should be funded by supplement manufacturers. Although it is challenging to provide such information, we suggest a model to provide an accredited testing program suitable for the Australian situation, with targeted athlete education about the "sports safety" of sports supplements and foods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fasting triggers a complex array of adaptive metabolic and hormonal responses including an augmentation in the capacity for mitochondrial fatty acid (FA) oxidation in skeletal muscle. This study hypothesized that this adaptive response is mediated by increased mRNA of key genes central to the regulation of fat oxidation in human skeletal muscle. Fasting dramatically increased UCP3 gene expression, by 5-fold at 15 h and 10-fold at 40 h. However the expression of key genes responsible for the uptake, transport, oxidation, and re-esterification of FA remained unchanged following 15 and 40 h of fasting. Likewise there was no change in the mRNA abundance of transcription factors. This suggests a unique role for UCP3 in the regulation of FA homeostasis during fasting as adaptation to 40 h of fasting does not require alterations in the expression of other genes necessary for lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Skeletal muscle, as a consequence of its mass and great capacity for altered metabolism, has a major impact on whole-body metabolic homeostasis and is capable of remarkable adaptation in response to various physiological stimuli, including exercise and dietary intervention. Exercise-induced increases in skeletal muscle mRNA levels of a number of genes have been reported, due to transcriptional activation and/or increased mRNA stability. The cellular adaptations to exercise training appear to be due to the cumulative effects of transient increases in gene transcription after repeated exercise bouts. The relative importance of transcriptional (mRNA synthesis) and translational (mRNA stability or translational efficiency) mechanisms for the training-induced increases in skeletal muscle protein abundance remains to be fully elucidated. Dietary manipulation, and the associated alterations in nutrient availability and hormone levels, can also modify skeletal muscle gene expression, although fewer studies have been reported. A major challenge is to understand how exercise and diet exert their effects on gene and protein expression in skeletal muscle. In relation to exercise, potential stimuli include stretch and muscle tension, the pattern of motor nerve activity and the resultant calcium transients, the energy charge of the cell and substrate availability, oxygen tension and circulating hormones. These are detected by various cellular signaling mechanisms, acting on a range of downstream targets and a wide range of putative transcription factors. A key goal in the years ahead is to identify how alterations at the level of gene expression are coupled to the changes in skeletal muscle phenotype. It is clear that gene expression, although representing a specific site of regulation, is only one step in a complex cascade from the initial stimulus to the final phenotypic adaptation and integrated physiological response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been reported previously that leptin may be involved in nicotine's ability to reduce body weight. Our aim was to investigate whether the anorexic action of nicotine is related to the actions of leptin by utilizing lean leptin-sensitive and obese leptin-resistant Psammomys obesus. Lean and obese P. obesus were assigned to receive nicotine sulphate at 6, 9 or 12 mg/day or saline (control) for 9 days (n = 6-10 in each group), administered using mini-osmotic pumps. Food intake, body weight, plasma leptin concentrations, plasma insulin and blood glucose were measured at baseline and throughout the study period. Nicotine treatment reduced food intake by up to 40% in lean and obese P. obesus. Plasma leptin levels fell significantly only in lean nicotine-treated animals, whereas no changes were observed in obese nicotine-treated animals. However, both lean and obese nicotine-treated animals had similar reductions in body weight. Our results show that nicotine has dramatic effects on food intake and body weight, however, these changes appear to be independent of the leptin signalling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Skeletal muscle is a complex and heterogenous tissue capable of remarkable adaptation in response to exercise training. The role of gene transcription, as an initial target to control protein synthesis, is poorly understood.
2. Mature myofibres contain several hundred nuclei, all of which maintain transcriptional competency, although the localized responsiveness of nuclei is not well known. Myofibres are capable of hypertrophy. These processes require the activation and myogenic differentiation of mononuclear satellite cells that fuse with the enlarging or repairing myofibre.
3. A single bout of exercise in human subjects is capable of activating the expression of many diverse groups of genes.
4. The impact of repeated exercise bouts, typical of exercise training, on gene expression has yet to receive systematic investigation.
5. The molecular programme elicited by resistance exercise and endurance exercise differs markedly. Muscular hypertrophy following resistance exercise is dependent on the activation of satellite cells and their subsequent myogenic maturation. Endurance exercise requires the simultaneous activation of mitochondrial and nuclear genes to enable mitochondrial biogenesis.
6. Future analysis of the regulation of genes by exercise may combine high-throughput technologies, such as gene-chips, enabling the rapid detection and analysis of changes in the expression of many thousands of genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jockeys are required to maintain very low body weight and precise weight control during competition. This study examined the weight loss and weight management strategies of professional horseracing jockeys in the state of Victoria, Australia. An anonymous, self-completed questionnaire was administered (55 % response rate, n = 116). Almost half (43 %) reported that maintaining riding weight was difficult or very difficult, with 75 % routinely skipping meals. In preparation for racing, 60 % reported that they typically required additional weight loss, with 81 % restricting food intake in the 24 hours prior to racing. Additionally, sauna-induced sweating (29 %) and diuretics (22 %) were frequently employed to further aid in weight loss prior to racing. These rapid weight loss methods did not differ between the 51 % of jockeys who followed a weight management plan compared to those who did not. The impact of these extreme weight loss practices on riding performance and health remains unknown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Dietary fatty acids may be important in regulating gene expression. However, little is known about the effect of changes in dietary fatty acids on gene regulation in human skeletal muscle.
Objective: The objective was to determine the effect of altered dietary fat intake on the expression of genes encoding proteins necessary for fatty acid transport and &szlig;-oxidation in skeletal muscle.
Design: Fourteen well-trained male cyclists and triathletes with a mean (&plusmn; SE) age of 26.9 &plusmn; 1.7 y, weight of 73.7 &plusmn; 1.7 kg, and peak oxygen uptake of 67.0 &plusmn; 1.3 mL &dot; kg-1 &dot; min-1 consumed either a high-fat diet (HFat: > 65% of energy as lipids) or an isoenergetic high-carbohydrate diet (HCho: 70–75% of energy as carbohydrate) for 5 d in a crossover design. On day 1 (baseline) and again after 5 d of dietary intervention, resting muscle and blood samples were taken. Muscle samples were analyzed for gene expression [fatty acid translocase (FAT/CD36), plasma membrane fatty acid binding protein (FABPpm), carnitine palmitoyltransferase I (CPT I), &szlig;-hydroxyacyl-CoA dehydrogenase (&szlig;-HAD), and uncoupling protein 3 (UCP3)] and concentrations of the proteins FAT/CD36 and FABPpm.
Results: The gene expression of FAT/CD36 and &szlig; -HAD and the gene abundance of FAT/CD36 were greater after the HFat than after the HCho diet (P < 0.05). Messenger RNA expression of FABPpm, CPT I, and UCP-3 did not change significantly with either diet.
Conclusions
: A rapid and marked capacity for changes in dietary fatty acid availability to modulate the expression of mRNA-encoding proteins is necessary for fatty acid transport and oxidative metabolism. This finding is evidence of nutrient-gene interactions in human skeletal muscle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated whether there were any differences between males and females in respect to creatine transporter (CreaT) gene expression and/or total creatine (TCr) content in human vastus lateralis muscle. Skeletal muscle obtained from young healthy male (n = 13, age: 23.2 ± 5.0 years) and female subjects (n = 12, age: 21.7 ± 4.3 years) was analyzed for CreaT mRNA, CreaT protein and TCr content. Total CreaT protein content in the muscle was similar (p > 0.05) between the sexes. Two bands (~ 55 and 73 kDa) of the CreaT protein were detected in all muscle samples. Both the 55 and the 73 kDa bands were present in similar (p > 0.05) amounts in males compared with females. The 73 kDa band was in greater abundance (p < 0.05) than the 55 kDa band, irrespective of gender. In addition, CreaT mRNA expression relative to ß-actin mRNA and the TCr content (males: 117.8 ± 2.2, females: 125.3 ± 4.3 mmol.kg–1 dry mass) were also unaffected (p > 0.05) by gender. These data demonstrate that gender does not influence skeletal muscle TCr content and CreaT gene expression in young human subjects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Describes adults' perceptions and beliefs about foods that are considered "fattening". Use of qualitative and quantitative methods to determine the prevalence of the perceptions among adults; Range of factors that are considered when judging foods as "fattening"; Limitations in the public's understandings of "fattening foods" which are inconsistent with dietary recommendations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims/hypothesis: Recruitment of the protein c-Cbl to the insulin receptor (IR) and its tyrosine phosphorylation via a pathway that is independent from phosphatidylinositol 3prime-kinase is necessary for insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. The activation of this pathway by insulin or exercise has yet to be reported in skeletal muscle. Methods: Lean and obese Zucker rats were randomly assigned to one of three treatment groups: (i) control, (ii) insulin-stimulated or (iii) acute, exhaustive exercise. Hind limb skeletal muscle was removed and the phosphorylation state of IR, Akt and c-Cbl measured.  Results:   Insulin receptor phosphorylation was increased 12-fold after insulin stimulation (p<0.0001) in lean rats and threefold in obese rats. Acute exercise had no effect on IR tyrosine phosphorylation. Similar results were found for serine phosphorylation of Akt. Exercise did not alter c-Cbl tyrosine phosphorylation in skeletal muscle of lean or obese rats. However, in contrast to previous studies in adipocytes, c-Cbl tyrosine phosphorylation was reduced after insulin treatment (p<0.001). Conclusions/interpretation: We also found that c-Cbl associating protein expression is relatively low in skeletal muscle of Zucker rats compared to 3T3-L1 adipocytes and this could account for the reduced c-Cbl tyrosine phosphorylation after insulin treatment. Interestingly, basal levels of c-Cbl tyrosine phosphorylation were higher in skeletal muscle from insulin-resistant Zucker rats (p<0.05), but the physiological relevance is not clear. We conclude that the regulation of c-Cbl phosphorylation in skeletal muscle differs from that previously reported in adipocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: The energy density (ED) of the diet is considered an important determinant of total energy intake and thus energy balance and weight change. We aimed to compare relationships between ED and macronutrient content in individual food and beverage items as well as population diet in a typical Western country. Design: Nutrient data for 3673 food items and 247 beverage items came from the Australian Food and Nutrient database (AusNut). Food and beverage intake data came from the 1995 Australian National Nutrition Survey (a 24-h dietary recall survey in 13 858 people over the age of 2). Relationships between ED and macronutrient and water content were analysed by linear regression with 95% prediction bands. Results: For both individual food items and population food intake, there was a positive relationship between ED and percent energy as fat and negative relationships between ED and percent energy as carbohydrate and percent water by weight. In all cases, there was close agreement between the slopes of the regression lines between food items and dietary intake. There were no clear relationships between ED and macronutrient content for beverage items. Carbohydrate (mostly sucrose) contributed 91, 47, and 25% of total energy for sugar-based, fat-based, and alcohol-based beverages respectively. Conclusions: The relationship between ED and fat content of foods holds true across both population diets and individual food items available in the food supply in a typical Western country such as Australia. As high-fat diets are associated with a high BMI, population measures with an overall aim of reducing the ED of diets may be effective in mediating the growing problem of overweight and obesity.