26 resultados para Ca(OH)2

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interfacial properties of the steel–concrete system are examined via a new approach for evaluation of galvanostatic pulse data. This methodology allows for rapid determination of the corrosion activity of steel, and readily yields values for parameters related to corrosion such as the polarisation resistance and interfacial capacitance. The method of analysis is based on the iterative fitting of a non-exponential model based on a modified Kohlrausch–Williams–Watt (KWW) formalism. The transient behaviour of steel in concrete is non-exponential in its form and, when analysed this way, an exponent β can be determined characterising the exponential non-ideality of the transient. This non-ideality parameter is found to differ significantly for actively corroding and passive specimens, thereby serving as a useful index to the level of corrosion being experienced. Furthermore, the investigation of the interfacial characteristics of the system, previously unobtainable in a reproducible manner via other electrochemical methods, reveal information regarding the kinetic factors governing corrosion of steel in concrete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stepwise reaction of [2,6-Mes2C6H3In(OH)2]4 with carbon dioxide and ethylene glycol proceeded with the formation of (2,6-Mes2C6H3In)4(CO3)2(OH)4(H2O)2 (1) and (2,6-Mes2C6H3In)4(OCH2CH2O)2(OH)4 (2), respectively, and eventually produced (2,6-Mes2C6H3In)4(CO3)2(OCH2CH2OH)2(OH)2 (3). Attempts to liberate ethylene carbonate upon heating of 3 were unsuccessful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new stable aluminum aminoterephthalate system contains octameric building blocks that are connected by organic linkers to form a 12-connected net (see picture). The structure adopts a cubic centered packing motive in which octameric units replace individual atoms, thus forming distorted octahedral (red sphere) and tetrahedral cages (green spheres) with effective accessible diameters of 1 and 0.45 nm, respectively

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The one-electron reduction of [α2-FeIII(OH2)P2W17O61]7- at a glassy carbon electrode was investigated using cyclic and rotating-disk-electrode voltammetry in buffered and unbuffered aqueous solutions over the pH range 3.45−7.50 with an ionic strength of approximately 0.6 M maintained. The behavior is well-described by a square-scheme mechanism P + e- ↔ Q (E10/ = −0.275 V, k10/ = 0.008 cm s-1, and α1 = 1/2), PH+ + e- ↔ QH+ (E20/ = −0.036 V, k20/ = 0.014 cm s-1, and α2 = 1/2), PH+ ↔ P + H+ (KP = 3.02 × 10-6 M), and QH+ ↔ Q + H+ (KQ = 2.35 × 10-10 M), where P, Q, PH+, and QH+ correspond to [α2-FeIII(OH)P2W17O61]8-, [α2-FeII(OH)P2W17O61]9-, [α2-FeIII(OH2)P2W17O61]7-, and [α2-FeII(OH2)P2W17O61]8-, respectively; E10‘ and E20‘ are the formal potentials, k10‘ and k20‘ are the formal (standard) rate constants, and KP and KQ are the acid dissociation constants for the relevant reactions. The analysis for the buffered media is based on the approach of Laviron who demonstrated that a square scheme with fully reversible protonations, reversible or quasi reversible electron transfers with the assumption that α1 = α2, can be well-described by the behavior of a simple redox couple, ox + e- ↔ red, whose formal potential, Eapp0‘, and standard rate constant, kapp0‘, are straightforwardly derived functions of pH, as are the values of E10‘, k10‘, E20‘, k20‘, and KP (only three of the four thermodynamic parameters in a square scheme can be specified). It was assumed that αapp = 1/2, and the simulation program DigiSim was used to determine the values of Eapp0‘ and kapp0‘, which are required to describe the cyclic voltammograms obtained in buffered media in the pH range from 3.45 to 7.52 (buffer-related reactions which effect general acid−base catalysis are included in the simulations). DigiSim simulations of cyclic voltammograms obtained in unbuffered media yielded the values of E10‘ and k10‘; KQ was then directly computed from thermodynamic constraints. These simulations included additional reactions between the redox species and H2O. The value of the diffusion coefficient of the [α2-FeIII(OH2)P2W17O61]7-, 2.92 × 10-6 cm2 s-1, was determined using DigiSim simulations of voltammograms at a rotating disk electrode in buffered and unbuffered media at pH 3.45. The diffusion coefficients of all redox species were assumed to be identical. When the pH is greater than 6, instability of P (i.e., [α2-FeIII(OH)P2W17O61]8-) led to the loss of the reactant and precluded lengthy experimentation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present study, the influence of calcium ion deposition on the apatite-inducing ability of porous titanium(Ti) was investigated in a modified simulated body fluid (m-SBF). Calcium hydroxide (Ca(OH)2) solutions with five degrees of saturation were used to hydrothermally deposit Ca ions on porous Ti with a porosity of 80%. Apatite-inducing ability of the Ca-ion-deposited porous Ti was evaluated by soaking them in m-SBF for up to 14 days. Scanning electron microscopy (SEM) and X-ray diffractometry (XRD) confirmed that a thin layer of calcium titanate (CaTiO3)/calcium oxide (CaO) mixture with a nanostructured porous network was produced on porous Ti substrates after hydrothermal treatment at 200 °C for 8 h. X-ray photoelectron spectroscopy results demonstrated that the content of the Ca ions deposited on Ti and the thickness of the CaTiO3/CaO layer increased with increasing saturation degree of the Ca(OH)2 solution. The thickest (over 10 nm) CaTiO3/CaO layer with the highest Ca content was achieved on the Ti treated in an oversaturated Ca(OH)2 solution (0.2 M). SEM, XRD, transmission electron microscopy and Fourier transformed infrared spectroscopy analysis indicated that the porous Ti samples deposited with the highest content of Ca ions exhibited the best apatite-inducing ability, producing a dense and complete carbonated apatite coating after a 14 day soaking in m-SBF. The present study illustrated the validity of using Ca ion deposition as a pre-treatment to endow desirable apatite-inducing ability of porous Ti for bone tissue engineering applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple model was developed for the approximation of ring strain energies of homo- and heterometallic, six- and eight-membered cyclic organometallic group 14 oxides and the degree of puckering of their ring conformations. The conformational energy of a ring is modelled as the sum of its angular strain components. The bending potential energy functions for the various endocyclic M–O–M′ and O–M–O linkages (M, M′=Si, Ge, Sn) were calculated at the B3LYP/(v)TZ level of theory using H3MOM′H3 and H2M(OH)2 as model compounds. For the six-membered rings, the minimum total angular contribution to ring strain, ERSGmin was calculated to decrease in the order: cyclo-(H2SiO)3 (13.0 kJ mol−1)>cyclo-H2Sn(OSiH2)2O (7.0 kJ mol−1)>cyclo-H2Ge(OSiH2)2O (4.9 kJ mol−1)>cyclo-H2Si(OSnH2)2O (3.4 kJ mol−1)>cyclo-(H2SnO)3 (1.7 kJ mol−1)>cyclo-H2Si(OGeH2)2O (0.8 kJ mol−1)≈cyclo-H2Ge(OSnH2)2O (0.7 kJ mol−1)>cyclo-H2Sn(OGeH2)2O (0.1 kJ mol−1)≈cyclo-(H2GeO)3 (0 kJ mol−1). All of the six-membered rings were predicted to adopt (nearly) planar conformations (a=0.996<a<1). By contrast, all eight-membered rings were predicted to adopt strainless, but puckered conformations. The degree of puckering was predicted to increase in the order: cyclo-(H2SiO)4 (a=0.983)<cyclo-H2Sn(OSiH2O)2SiH2 (a=0.959)<cyclo-(H2SiO)2(H2SnO)2 (a=0.942)< cyclo-H2Si(OSnH2O)2SiH2 (a=0.935)<cyclo-(H2SnO)4 (a=0.916)<cyclo-(H2GeO)4 (a=0.885). The differences in ring strain and the degree of puckering were linked to the different electronegativities of Si, Ge and Sn. The results obtained are consistent with experimental ring strain energies; reactivities towards ring opening polymerizations or ring expansion reactions and observed ring conformations of cyclic organometallic group 14 oxides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of two amino acids, arginine which has a positively charged side-chain and glutamate which has a negatively charged side-chain on the Ca2+-activation properties of the contractile apparatus were examined in four structurally and functionally different types of skeletal muscle; long- and short-sarcomere fibres from the claw muscle of the yabby (a freshwater decapod crustacean), and fast- and slow-twitch fibres from limb muscles of the rat. Single skinned fibres were activated in carefully balanced solutions of different pCa (-log10[Ca2+]) that either contained the test solute (“test”) or not (“control”). The effect of phosphoarginine, a phosphagen that bears a nett negative charge, was also compared to the effects of arginine. Results show that (i) arginine (33-36 mmol l-1) significantly shifted the force–pCa curve by 0.08–0.13 pCa units in the direction of increased sensitivity to Ca2+-activated contraction in all fibre types; (ii) phosphoarginine (9–10 mmol l-1) induced a significant shift of the force–pCa curve by 0.18–0.24 pCa units in the direction of increased sensitivity to Ca2+ in mammalian fast- and slow-twitch fibres, but had no significant effects on the force–pCa relation in either long- or short-sarcomere crustacean fibres; (iii) glutamate (36–40 mmol l-1), like arginine affected the force–pCa relation of all fibre types investigated, but in the opposite direction, causing a significant decrease in the sensitivity to Ca2+-activated contraction by 0.08–0.19 pCa units; (iv) arginine, phosphoarginine and glutamate had little or no effect on the maximum Ca2+-activated force of crustacean and mammalian fibres. The results suggest that the opposing effects of glutamate and arginine are not related to simply their charge structure, but must involve complex interactions between these molecules, Ca2+ and the regulatory and other myofibrillar proteins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

µ-calpain and calpain-3 are Ca2+-dependent proteases found in skeletal muscle. Autolysis of calpains is observed using Western blot analysis as the cleaving of the full-length proteins to shorter products. Biochemical assays suggest that µ-calpain becomes proteolytically active in the presence of 2–200 µM Ca2+. Although calpain-3 is poorly understood, autolysis is thought to result in its activation, which is widely thought to occur at lower intracellular Ca2+ concentration levels ([Ca2+]i; ~1 µM) than the levels at which µ-calpain activation occurs. We have demonstrated the Ca2+-dependent autolysis of the calpains in human muscle samples and rat extensor digitorum longus (EDL) muscles homogenized in solutions mimicking the intracellular environment at various [Ca2+] levels (0, 2.5, 10, and 25 µM). Autolysis of calpain-3 was found to occur across a [Ca2+] range similar to that for µ-calpain, and both calpains displayed a seemingly higher Ca2+ sensitivity in human than in rat muscle homogenates, with ~15% autolysis observed after 1-min exposure to 2.5 µM Ca2+ in human muscle and almost none after 1- to 2-min exposure to the same [Ca2+]i level in rat muscle. During muscle activity, [Ca2+]i may transiently peak in the range found to autolyze µ-calpain and calpain-3, so we examined the effect of two types of exhaustive cycling exercise (30-s "all-out" cycling, n = 8; and 70% VO2 peak until fatigue, n = 3) on the amount of autolyzed µ-calpain or calpain-3 in human muscle. No significant autolysis of µ-calpain or calpain-3 occurred as a result of the exercise. These findings have shown that the time- and concentration-dependent changes in [Ca2+]i that occurred during concentric exercise fall near but below the level necessary to cause autolysis of calpains in vivo.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

α-l-Rhamnosidase (EC 3.2.1.40) is an enzyme that catalyzes the cleavage of terminal rhamnoside groups from naringin to prunin and rhamnose. In this study, a His-tag was genetically attached to the rhamnosidase gene ramA from Clostridium stercorarium to facilitate its purification from Escherichia coli BL21 (DE3) cells containing the pET-21d/ramA plasmid. Immobilized metal-chelate affinity chromatography (IMAC) resulted in one-step purification of N-terminally His-tagged recombinant rhamnosidase (N-His-CsRamA) which was immobilized in Ca2+ alginate (3%) beads. The optimum pH levels of the free and immobilized recombinant rhamnosidase were found to be 6.0 and 7.5, and the optimum temperature 55 and 60 °C respectively. At 50 °C, the free enzyme was relatively stable and exhibited a less than 50% reduction in residual activity after 180 min of incubation. The free and immobilized enzymes achieved 76% and 67% hydrolysis of the naringin in Kinnow juice respectively. Immobilization of recombinant rhamnosidase enabled its reutilization up to 9 hydrolysis batches without an appreciable loss in activity. This result indicated that the His-tagged thermostable rhamnosidase could be prepared as described and may serve to illustrate an economical and commercially viable process for industrial application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Extracellular adenosine 5′-triphosphate (ATP) is an agonist for the P2Z receptor of human leukaemic lymphocytes and opens a Ca 2+-selective ion channel, which also conducts Ba2+, Sr2+ and the small fluorescent dye, ethidium+. A wide range of receptor agonists, many of which raise cytosolic [Ca2+] activate phospholipase D (PLD). In the present study, it was shown that both ATP and 3′-O-(4-benzoylbenzoyl)-ATP (BzATP) stimulated PLD activity in a concentration-dependent manner, and the inhibitory effects of suramin, oxidised ATP, extracellular Na+ and Mg2+ suggested that the effect of these agonists is mediated by P2Z receptors. The role of divalent cations in ATP-stimulated PLD activity was investigated. Several agonists (eg ATP, thapsigargin, ionomycin) stimulated a rise in cytosolic [Ca2+] in human lymphocytes, but only ATP and ionomycin stimulated PLD activity. When Ca2+ influx was prevented by EGTA, the majority of ATP-stimulated and all of ionomycin-stimulated PLD activity was inhibited. Preloading cells with the Ca2+ chelator, BAPTA, reduced cytosolic [Ca2+] and, paradoxically, ATP-stimulated PLD activity was potentiated. ATP-stimulated PLD activity was supported by both Ba2+ and Sr2+ when they were substituted for extracellular Ca2+. Furthermore, both ATP-stimulated PLD activity and ATP-stimulated 133Ba2+ influx showed a linear dependence on extracellular [Ba2+]. Thus it was concluded that ATP stimulated PLD activity in direct proportion to the influx of divalent cations through the P2Z ion channel and this PLD activity was insensitive to changes in bulk cytosolic [Ca2+]. The calmodulin (Ca2+/CaM) inhibitor, trifluoperazine (TFP) inhibited ionomycin- and ATP-stimulated PLD activity and ATP-stimulated apoptosis, but had no effect on PLD activity already activated by ATP. However, TFP inhibited ATP-stimulated Ca2+, Ba2+ and ethidium+ fluxes, at concentrations below those which inhibit Ca2+/CaM, suggesting that TFP inhibits the P2Z receptor. Similarly, the isoquinolinesulphonamide, KN-62, a selective inhibitor of Ca2+/CaM-dependent protein kinase II (CaMKII), also prevented ATP-stimulated apoptosis, but had no effect on pre-activated PLD. In addition, KN-62, and an analogue, KN-04, which has no effect on CaMKII, potently inhibited ATP-stimulated Ba2+ influx (IC50 12.7 ± 1.5 and 17.3 ± 2.7 nM, respectively), ATP-stimulated ethidium+ uptake (IC50 13.1 ± 2.6 and 37.2 ± 8.9 nM, respectively), ATP-stimulated phospholipase D activity (50% inhibition 5.9 ± 1.2 and 9.7 ± 2.8 nM, respectively) and ATP-induced shedding of the surface adhesion molecule, L-selectin (IC50 31.5 ± 4.5 and 78.7 ± 10.8 nM, respectively). They did not inhibit phorbol ester- or ionomycin-stimulated PLD activity or phorbol ester-induced L-selectin shedding. Neither KN-62 nor KN-04 (both 500 nM) have any effect on UTP-stimulated Ca2+ transients in fura-2-loaded human neutrophils, a response which is mediated by the P2Y2 receptor, neither did they inhibit ATP-stimulated contractile responses mediated by the P2X1 receptor of guinea pig urinary bladder. Thus, KN-62 and KN-04 are almost equipotent as P2Z inhibitors with IC50s in the nanomolar, indicating that their actions cannot be due to CaMKII inhibition, but rather that they are potent and direct inhibitors of the P2Z receptor. Extracellular ATP-induced shedding of L-selectin from lymphocytes into the medium is a Ca2+-independent response. L-selectin is either cleaved by a metalloproteinase or a PLD with specificity for glycosylphosphatidylinositol (GPI). The novel hydroxamic acid-based zinc chelator, Ro-31-9790 blocks ATP-induced L-selectin shedding, but was without effect on ATP-induced Ba2+ influx or ATP-stimulated PLD activity. Furthermore, another zinc chelator, 1,10-phenanthroline, an inhibitor of a GPI-PLD, potentiated rather than inhibited ATP-stimulated PLD activity, suggesting that ATP-induced L-selectin shedding and ATP-stimulated PLD activity are independent of each other. Although extracellular ATP is the natural ligand for the lymphocyte P2Z receptor, it is less potent than BzATP in stimulating Ba2+ influx. Concentration-response curves for BzATP- and ATP-stimulated ethidium+ influx gave EC50s 15.4 ± 1.4 µM and 85.6 ± 8.8 µM, respectively. The maximal response to ATP was only 69.8 ± 1.9% of that for BzATP. Hill coefficients were 3.17 ± 0.24 and 2.09 ± 0.45 for BzATP and ATP respectively, suggesting greater positive cooperativity for BzATP than for ATP in opening the P2Z-operated ion channel. A rank order of agonist potency of BzATP > ATP = 2MeSATP > ATPγS was observed for agonist-stimulated ethidium+ influx, while maximal influxes followed a rank order of BzATP > ATP > 2MeSATP > ATPγS. When ATP (300 -1000 µM) was added simultaneously with 30 µM BzATP (EC90), it reduced both ethidium+ and Ba2+ fluxes by 30 - 40% relative to values observed with BzATP alone. KN-62, previously shown to be a specific inhibitor of the lymphocyte P2Z receptor, was a less potent antagonist of BzATP-induced fluxes than ATP, when maximal concentrations of both agonists (50 and 500 µM respectively) were used. However, when BzATP (18 µM) was used at a concentration equiactive with a maximally effective ATP concentration, KN-62 showed the same inhibitory potency for both agonists. The ecto-ATPase antagonist, ARL-67156, inhibited both ATP- and BzATP-stimulated Ba2+ influx, suggesting that the lower efficacy of ATP compared with BzATP was not due to preferential hydrolysis of ATP. Thus, the natural ligand, ATP, is a partial agonist for the P2Z receptor while BzATP is a full agonist. Moreover the competitive studies show that only a single class of P2-receptor (P2Z class) is expressed on human leukaemic lymphocytes. Both ATP- and BzATP-stimulated PLD activity were significantly inhibited (P < 0.05) when cells were suspended in iso-osmotic choline Cl medium. Choline+ was found to be a permeant for the P2Z ion channel, since ATP induced a large uptake of [14C]choline+ (60 to 150 µmol/ml intracellular water) during a 5 min incubation, which remained in the cells for several hours, and ATP was used to load cells with these levels of choline+. Intracellular choline+ inhibited ATP-, BzATP-, PMA- and ionomycin-stimulated PLD activity. Brief exposure of lymphocytes to ATP increased the subsequent basal rate of ethidium+ uptake, and this was prevented by intracellular choline+. It is proposed that P2Z-mediated Ca2+ influx in lymphocytes activates PLD leading to significantly changes of the phospholipid composition of the plasma membrane, which subsequently produces a permeability lesion, which in turn contributes to cell death.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the α4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca2+ and Sr2+ force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa50 - pSr50) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study determined the role of nitric oxide (NO) in neurogenic vasodilation in mesenteric resistance arteries of the toad Bufo marinus. NO synthase (NOS) was anatomically demonstrated in perivascular nerves, but not in the endothelium. ACh and nicotine caused TTX-sensitive neurogenic vasodilation of mesenteric arteries. The ACh-induced vasodilation was endothelium-independent and was mediated by the NO/soluble guanylyl cyclase signaling pathway, inasmuch as the vasodilation was blocked by the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one and the NOS inhibitors Nω- nitro-L-arginine methyl ester and Nω-nitro-L-arginine. Furthermore, the ACh-induced vasodilation was significantly decreased by the more selective neural NOS inhibitor N5-(1-imino-3-butenyl)-L-ornithine. The nicotine-induced vasodilation was endothelium-independent and mediated by NO and calcitonin gene-related peptide (CGRP), inasmuch as pretreatment of mesenteric arteries with a combination of Nω-nitro-L-arginine and the CGRP receptor antagonist CGRP-(8–37) blocked the vasodilation. Clotrimazole significantly decreased the ACh-induced response, providing evidence that a component of the NO vasodilation involved Ca2+-activated K+ or voltage-gated K+ channels. These data show that NO control of mesenteric resistance arteries of toad is provided by nitrergic nerves, rather than the endothelium, and implicate NO as a potentially important regulator of gut blood flow and peripheral blood pressure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Staphylococcus xylosus MAK2, Gram-positive coccus, a nonpathogenic member of the coagulase-negative Staphylococcus family was isolated from soil and used to produce naringinase in a stirred tank reactor. An initial medium at pH 5.5 and a cultivation temperature of 30°C was found to be optimal for enzyme production. The addition of Ca+2 caused stimulation of enzyme activity. The effect of various physico-chemical parameters, such as pH, temperature, agitation, and inducer concentration was studied. The enzyme production was enhanced by the addition of citrus peel powder (CPP) in the optimized medium. A twofold increase in naringinase production was achieved using different technological combinations. The process optimization using technological combinations allowed rapid optimization of large number of variables, which significantly improved enzyme production in a 5-l reactor in 34 h. An increase in sugar concentration (15 gl-1) in the fermentation medium further increased naringinase production (8.9 IUml-1) in the bioreactor. Thus, availability of naringinase renders it attractive for potential biotechnological applications in citrus processing industry.