24 resultados para CANCER GENE-THERAPY

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancer as a genetic disorder is one of the leading causes of death worldwide. Conventional anticancer options such as chemo- and/or radio-therapy have their own drawbacks and could not provide a cure in most cases at present. More effective therapeutic strategies with less side effects are urgently needed. Aptamers, also known as chemical antibodies, are single strand DNA or RNA molecules that can bind to their target molecules with high affinity and specificity. Such site-specific binding ability of aptamers facilitates the delivery and interaction of exogenous nucleic acids with diseased genes. Thus, aptamer-guided gene therapy has emerged as a promising anticancer strategy in addition to the classic treatment regimen. Aptamers can directly deliver anti-cancer nucleic acids, e.g. small interfering RNA, micro RNA, antimicroRNA and small hairpin RNA, to cancer cells or function as a targeting ligand to guide nanoparticles containing therapeutic nucleic acids. This review focuses on recent progress in aptamer-mediated gene therapy for the treatment of hepatocellular carcinoma and other types of cancers, shedding light on the potential of this novel approach of targeted cancer gene therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis helps to unravel the function of T lymphoma invasion and metastasis protein (TIAM1) and nucleolin, a nucleolar protein in retinoblastoma tumorigenesis. Aptamer based targeted imaging; drug and gene delivery to retinoblastoma and epithelial cancer cells was attained. The work work finally opened up avenues for cancer stem cell targeting using aptamers, imaging of cancer cells using novel bio-orthogonal agent and use of aptamer for blocking the miRNA-17-92 cluster maturation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A failure of a cell to self destruct has long been associated with cancer progression and development. The fact that tumour cells may not instigate cell arrest or activate cell death mechanisms upon cancer drug delivery is a major concern. Autophagy is a mechanism whereby cell material can be engulfed and digested while apoptosis is a self-killing mechanism, both capable of hindering multiplication after cell injury. In particular situations, autophagy and apoptosis seem to co-exist simultaneously or interdependently with the aid of mutual proteins. This review covers roles of microRNAs and chemopreventive agents and makes an attempt at outlining possible partnerships in maximizing cancer cell death with minimal normal cell damage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, progress on the gold-nanoparticleenhanced photothermal therapy is reviewed. Size- and shapedependent optical absorption of gold nanoparticles, the effects of various parameters on the therapeutic efficiency, and the mechanisms of gold-nanoparticle-assisted cancer therapy are discussed. Future research directions of gold-nanoparticle-assisted cancer photothermal therapy are also suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of bacteria in the regression of tumors has long been known. Various approaches for using bacteria in cancer therapy include the use of bacteria as sensitizing agents for chemotherapy, as delivery agents for cancer drugs and as agents for gene therapy. The tumor regression stimulated by infecting microorganisms has been attributed to activation of the immune system of the host. However, recent studies indicate that when tumor-harboring mice with defective immune systems are infected with certain microorganisms, the regression of the tumor is still observed, suggesting that there are other host factors contributing to the microbial associated regression of tumors. Since the use of live or attenuated bacteria for tumor regression has associated toxic effects, studies are in progress to identify a pure microbial metabolite or any component of the microbial cell that might have anti-cancer activity. It has now been demonstrated that a redox protein from Pseudomonas aeruginosa, a cupredoxin, can enter into human cancer cells and trigger the apoptotic cell death. In vivo, this cupredoxin can lead to the regression of tumor growth in immunodeficient mice harboring xenografted melanomas and breast cancer tumors without inducing significant toxic effects, suggesting that it has potential anti-cancer activity. This bacterial protein interacts with p53 and modulates mammalian cellular activity. Hence, it could potentially be used as an anti-cancer agent for solid tumors and has translational value in tumor-targeted or in combinational-biochemotherapy strategies for cancer treatments. Here, we focus on diverse approaches to cancer biotherapy, including bacteriolytic and bacterially-derived anti-cancer agents with an emphasis on their mechanism of action and therapeutic potential.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Details 13 novel hormone compounds, designed and synthesised for the purpose of aiding the detection and treatment of breast and prostate cancers. Cellular and electromechanical studies of 3 of these synthesised hormones indicate a potential for human application.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite therapeutic advances, the development of breast cancer brain metastases (BCBM) is still the harbinger of a dismal prognosis. Patient outcomes vary depending on factors, including tumor phenotype, extent of disease within and outside the brain, as well as patient performance status. Treatment includes surgery, radiation therapy and systemic therapy determined by patient and tumor characteristics. Despite these approaches, novel treatments are needed and there is growing interest in systemic therapies. However, the efficacy of pharmacologic agents is hampered by poor penetration of drugs across the blood–brain barrier. Therefore, there is a pressing need for a greater understanding of the natural history of BCBM to guide the development of further therapies. This review analyzes prognosis and treatment of BCBM by tumor phenotype and discusses ongoing research into new therapies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

PURPOSE: Thousands of children are living with advanced cancer; yet patient-reported outcomes (PROs) have rarely been used to describe their experiences. We aimed to describe symptom distress in 104 children age 2 years or older with advanced cancer enrolled onto the Pediatric Quality of Life and Evaluation of Symptoms Technology (PediQUEST) Study (multisite clinical trial evaluating an electronic PRO system).

METHODS: Symptom data were collected using age- and respondent-adapted versions of the PediQUEST Memorial Symptom Assessment Scale (PQ-MSAS) at most once per week. Clinical and treatment data were obtained from medical records. Individual symptom scores were dichotomized into high/low distress. Determinants of PQ-MSAS scores were explored using linear mixed-effects models.

RESULTS: During 9 months of follow-up, PQ-MSAS was administered 920 times: 459 times in teens (99% self-report), 249 times in children ages 7 to 12 years (96% child/parent report), and 212 times in those ages 2 to 6 years (parent reports). Common symptoms included pain (48%), fatigue (46%), drowsiness (39%), and irritability (37%); most scores indicated high distress. Among the 73 PQ-MSAS surveys administered in the last 12 weeks of life, pain was highly prevalent (62%; 58% with high distress). Being female, having a brain tumor, experiencing recent disease progression, and receiving moderate- or high-intensity cancer-directed therapy in the prior 10 days were associated with worse PQ-MSAS scores. In the final 12 weeks of life, receiving mild cancer-directed therapy was associated with improved psychological PQ-MSAS scores.

CONCLUSION: Children with advanced cancer experience high symptom distress. Strategies to promote intensive symptom management are indicated, especially with disease progression or administration of intensive treatments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sodium Iodide Symporter (NIS), a therapeutic gene, was studied for the first time in retinoblastoma (RB) correlating the expression with clinicopathological invasiveness of the tumor. The specificity of EpCAM based NIS gene therapy was demonstrated in breast cancer cell as a proof of concept model via 1) EpCAM as tissue specific promoter and 2) nanoformulation, both of which showed encouraging outcomes. In addition, for the first time the upregulated expression of splice variants of survivin, Bax and Bcl-2 in RB tumors was explored indicating their possible role in tumor progression through apoptosis dysregulation. Thus, the above study achieved a profound knowledge about NIS and apoptotic genes in extrathyroidal tumors.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 Mesoporous silica nanoparticle based drug and gene delivery system was developed to overcome the acquired drug resistance in colorectal cancer by targeted delivery of anti-cancer drug in the cytoplasm of the cancer cells and silencing the gene expression related to drug resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The oxazaphosphorines cyclophosphamide, ifosfamide and trofosfamide remain a clinically useful class of anticancer drugs with substantial antitumour activity against a variety of solid tumors and hematological malignancies. A major limitation to their use is tumour resistance, which is due to multiple mechanisms that include increased DNA repair, increased cellular thiol levels, glutathione S-transferase and aldehyde dehydrogenase activities, and altered cell-death response to DNA damage. These mechanisms have been recently re-examined with the aid of sensitive analytical techniques, high-throughput proteomic and genomic approaches, and powerful pharmacogenetic tools. Oxazaphosphorine resistance, together with dose-limiting toxicity (mainly neutropenia and neurotoxicity), significantly hinders chemotherapy in patients, and hence, there is compelling need to find ways to overcome it. Four major approaches are currently being explored in preclinical models, some also in patients: combination with agents that modulate cellular response and disposition of oxazaphosphorines; antisense oligonucleotides directed against specific target genes; introduction of an activating gene (CYP3A4) into tumor tissue; and modification of dosing regimens. Of these approaches, antisense oligonucleotides and gene therapy are perhaps more speculative, requiring detailed safety and efficacy studies in preclinical models and in patients. A fifth approach is the design of novel oxazaphosphorines that have favourable pharmacokinetic and pharmacodynamic properties and are less vulnerable to resistance. Oxazaphosphorines not requiring hepatic CYP-mediated activation (for example, NSC 613060 and mafosfamide) or having additional targets (for example, glufosfamide that also targets glucose transport) have been synthesized and are being evaluated for safety and efficacy. Characterization of the molecular targets associated with oxazaphosphorine resistance may lead to a deeper understanding of the factors critical to the optimal use of these agents in chemotherapy and may allow the development of strategies to overcome resistance.