64 resultados para Autonomous Microgrid

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an automated trimming system of large glass fiber reinforced plastic (GFRP) using an omni-directional wheeled mobile robot (WMR) and its path control method. In trimming GFRP parts, much glass fiber and plastic powder dust occur and it becomes bad visible in environment. It is necessary to correct dead-reckoning errors of the WMR in order to control its moving path. We have discussed an external correction method of the dead-reckoning errors for the WMR using ultrasonic sensor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present a technique based on precision guidance approach for the sensor delivery and reception problem between two mobile robots. A slave robot is employed to collect sensors and slack them on a tray carried by the mobile master robot. We define the terminal attitude of the slave robot with respect to the master and present a LQR control approach to solving the problem of achieving a desired terminal approach angle necessary for the appropriate sensor delivery. The approach criteria is defined in terms of both minimizing the miss distance and controlling the slave robot's body attitude with respect to the master robot at the terminal point.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Here we define the terminal attitude of the pursuer with respect to a target and present a LQR and H¿ control approach to solving the problem of pursuer achieving a desired terminal attack/approach angle. The intercept or engagement criteria is defined in terms of both minimizing the miss distance and controlling the pursuer's body attitude with respect to the target at the terminal point. This approach in comparison to previous approaches consider the relativistic approach of the pursuer with respect to the target as opposed the absolute velocities of the two dynamic bodies, and have possible applications ranging from autonomous vehicle entry in to a mother craft to nossle engagements in on-flight refuelling or even in precision missile guidance. Here we also suitably formulate the H¿ control ideas directly applicable to the underlying problem and presents both state feedback and output feed back results for the case of finite horizon and non-zero initial conditions together with a optimal parameter value to achieve a desired terminal characteristic in terms of the original weighting parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks are emerging as the new frontier in sensing technology, however there are still issues that need to be addressed. Two such issues are data collection and energy conservation. We consider a mobile robot, or a mobile agent, traveling the network collecting information from the sensors themselves before their onboard memory storage buffers are full. A novel algorithm is presented that is an adaptation of a local search algorithm for a special case of the Asymmetric Traveling Salesman Problem with Time-windows (ATSPTW) for solving the dynamic scheduling problem of what nodes are to be visited so that the information collected is not lost. Our algorithms are given and compared to other work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an application of Microsoft Robotics Studio (MSRS) in which a team of six four wheel drive, ground based robots explore and map simulated terrain. The user has the ability to modify the terrain and assign destination objectives to the team while the simulation is running. The terrain is initially generated using a gray scale image, in which the intensity of each pixel in the image gives an altitude datum. The robots start with no knowledge of their surroundings, and map the terrain as they attempt to reach user-defined target objectives. The mapping process simulates the use of common sensory hardware to determine datum points, including provision for field of view, detection range, and measurement accuracy. If traversal of a mapped area is indicated by the users’ targeting commands, path planning heuristics developed for MSRS by the author in earlier work are used to determine an efficient series of waypoints to reach the objective. Mutability of terrain is also explored- the user is able to modify the terrain without stopping the simulation. This forces the robots to adapt to changing environmental conditions, and permits analysis of the robustness of mapping algorithms used when faced with a changing world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this research is to model and analyze candidate hull configurations for a low-cost, modular, autonomous underwater robot. As the computational power and speed of microprocessors continue to progress, we are seeing a growth in the research, development, and the utilization of underwater robots. The number of applications is broadening in the R&D and science communities, especially in the area of multiple, collaborative robots. These underwater collaborative robots represent an instantiation of a System of Systems (SoS). While each new researcher explores a unique application, control method, etc. a new underwater robot vehicle is designed, developed, and deployed. This sometimes leads to one-off designs that are costly. One limit to the wide-scale utilization of underwater robotics is the cost of development. Another limit is the ability to modify the configuration for new applications and evolving requirements. Consequently, we are exploring autonomous underwater vehicle (AUV) hull designs towards the goal of modularity, vehicle dexterity, and minimizing the cost. In our analysis, we have employed 3D solid modeling tools and finite element methods. In this paper we present our initial results and discuss ongoing work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, an algorithm for approximating the path of a moving autonomous mobile sensor with an unknown position location using Received Signal Strength (RSS) measurements is proposed. Using a Least Squares (LS) estimation method as an input, a Maximum-Likelihood (ML) approach is used to determine the location of the unknown mobile sensor. For the mobile sensor case, as the sensor changes position the characteristics of the RSS measurements also change; therefore the proposed method adapts the RSS measurement model by dynamically changing the pass loss value alpha to aid in position estimation. Secondly, a Recursive Least-Squares (RLS) algorithm is used to estimate the path of a moving mobile sensor using the Maximum-Likelihood position estimation as an input. The performance of the proposed algorithm is evaluated via simulation and it is shown that this method can accurately determine the position of the mobile sensor, and can efficiently track the position of the mobile sensor during motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This note points out that the time complexity of the main multiple-surface sliding control (MSSC) algorithm in Huang and Chen [Huang, A. C. & Chen, Y. C. (2004). Adaptive multiple-surface sliding control for non-autonomous systems with mismatched uncertainties. Automatica, 40(11), 1939-1945] is O(2^n). Here, we propose a simplified recursive design MSSC algorithm with time complexity O(n), and, using mathematical induction, we show that this algorithm agrees with this MSSC law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12]. Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete. It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous dynamical systems may be extended. A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability. Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied. The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system. The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.