18 resultados para Aniline oligomers

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New α,ω-bis(trichlorostannyl)alkanes, Cl3Sn(CH2)nSnCl3 [n = 3-5, 8], have been synthesized via tin-phenyl bond cleavage reactions on α,ω-bis(triphenylstannyl)alkanes, Ph3Sn(CH2)nSnPh3 [n = 3-5, 8], using either SnCl4 or concentrated hydrochloric acid. Some key missing links, (H2O)Cl3Sn(CH2)3SnCl3(H2O) (1a) and (H2O)2Cl3Sn(CH2)3SnCl3(H2O)2 (6), in the hydrolysis pathway of organotin trichlorides were identified. Crystal structures of the nonassociated di-tin compounds (H2O)Cl3Sn(CH2)3SnCl3(H2O) (1a) and (H2O)2Cl3Sn(CH2)3SnCl3(H2O)2 (6, isolated as the 18-crown-6 cocrystal acetonitrile solvate) as well as the polymeric hydrolysis product [H2O(OH)Cl2Sn(CH2)3SnCl2(OH)H22H2O]n (7·2H2O) are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Flavonoids may be partly responsible for some health benefits, including antiinflammatory action and a decreased tendency for the blood to clot. An acute dose of flavanols and oligomeric procyanidins from cocoa powder inhibits platelet activation and function over 6 h in humans. OBJECTIVE: This study sought to evaluate whether 28 d of supplementation with cocoa flavanols and related procyanidin oligomers would modulate human platelet reactivity and primary hemostasis and reduce oxidative markers in vivo. DESIGN: Thirty-two healthy subjects were assigned to consume active (234 mg cocoa flavanols and procyanidins/d) or placebo (< or = 6 mg cocoa flavanols and procyanidins/d) tablets in a blinded parallel-designed study. Platelet function was determined by measuring platelet aggregation, ATP release, and expression of activation-dependent platelet antigens by using flow cytometry. Plasma was analyzed for oxidation markers and antioxidant status. RESULTS: Plasma concentrations of epicatechin and catechin in the active group increased by 81% and 28%, respectively, during the intervention period. The active group had significantly lower P selectin expression and significantly lower ADP-induced aggregation and collagen-induced aggregation than did the placebo group. Plasma ascorbic acid concentrations were significantly higher in the active than in the placebo group (P < 0.05), whereas plasma oxidation markers and antioxidant status did not change in either group. CONCLUSIONS: Cocoa flavanol and procyanidin supplementation for 28 d significantly increased plasma epicatechin and catechin concentrations and significantly decreased platelet function. These data support the results of acute studies that used higher doses of cocoa flavanols and procyanidins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polypyrrole is a material with immensely useful properties suitable for a wide range of electrochemical applications, but its development has been hindered by cumbersome manufacturing processes. Here we show that a simple modification to the standard electrochemical polymerization method produces polypyrrole films of equivalently high conductivity and superior mechanical properties in one-tenth of the polymerization time. Preparing the film as a series of electrodeposited layers with thorough solvent washing between layering was found to produce excellent quality films even when layer deposition was accelerated by high current. The washing step between the sequentially polymerized layers altered the deposition mechanism, eliminating the typical dendritic growth and generating nonporous deposits. Solvent washing was shown to reduce the concentration of oligomeric species in the near-electrode region and hinder the three-dimensional growth mechanism that occurs by deposition of secondary particles from solution. As artificial muscles, the high density sequentially polymerized films produced the highest mechanical work output yet reported for polypyrrole actuators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characterization of the previously reported diorganotellurium oxides R2TeO (R = Ph (1) and p-MeOC6H4 (2)) was revisited by osmometric molecular weight determinations, 125Te NMR spectroscopy, and electrospray spectrometry (ESMS) in solution and by 125Te MAS NMR spectroscopy in the solid state. The single-crystal X-ray structure of 2 revealed a polymeric arrangement that features a zigzag configured Te-O backbone without any secondary Te···O interactions. In solution 1 and 2 exist predominantly as monomers but appear to be in equilibrium with higher oligomers to a minor extent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stomatin, originally identified as a major protein of the human erythrocyte membrane, is widely expressed in various tissues. Orthologues are found in vertebrates, invertebrates, plants, and microorganisms. Related proteins exhibit a common core structure, termed the prohibitin (PHB) domain, with varying extensions. Stomatin has an unusual topology, similar to caveolin-1, with a hydrophobic domain embedded at the cytoplasmic side of the membrane. Additional anchoring is provided by palmitoylation and the membrane affinity of the PHB domain. Stomatin associates with cholesterol-rich microdomains (lipid rafts), forms oligomers, and thereby displays a scaffolding function by generating large protein-lipid complexes. It regulates the activity of various membrane proteins by reversibly recruiting them to lipid rafts. This mechanism of regulation has been shown for GLUT-1 and may also apply for ion channels. Stomatin is located at the plasma membrane, particularly in microvilli, in endocytic and exocytic vesicles, and cytoplasmic granules. Stomatin-carrying endosomes are highly dynamic and interact with lipid droplets suggesting a role in intracellular lipid transport. This subcellular distribution and the caveolin-like protein structure suggest important membrane organizing functions for stomatin. A general picture emerges now that cell membranes contain cholesterol-rich domains that are generated and regulated by scaffolding proteins like caveolins, stomatins, and flotillin/reggie proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laminarinase and endo-β-1,4-glucanase were purified and characterised from the midgut gland of the herbivorous land crab Gecarcoidea natalis and the crayfish Cherax destructor. The laminarinase isolated from G. natalis was estimated to have a molecular mass of 41 kDa by SDS-PAGE and 71 kDa by gel filtration chromatography. A similar discrepancy was noted for C. destructor. Possible reasons for this are discussed. Laminarinase (EC 3.2.1.6) from G. natalis had a Vmax of 42.0 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.126% (w/v) and an optimum pH range of 5.5–7, and hydrolysed mainly β-1,3-glycosidic bonds. In addition to the hydrolysis of β-1,3-glycosidic bonds, laminarinase (EC 3.2.1.39) from C. destructor was capable of significant hydrolysis of β-1,4-glycosidic bonds. It had a Vmax of 19.6 µmol reducing sugars produced min–1 mg protein–1, a Km of 0.059% (w/v) and an optimum pH of 5.5. Laminarinase from both species produced glucose and other short oligomers from the hydrolysis of laminarin. Endo-β-1,4-glucanase (EC 3.2.1.4) from G. natalis had a molecular mass of 52 kDa and an optimum pH of 4–7. It mainly hydrolysed β-1,4-glycosidic bonds, but was also capable of significant hydrolysis of β-1,3-glycosidic bonds. Two endo-β-1,4-glucanases, termed 1 and 2, with respective molecular masses of 53±3 and 52 kDa, were purified from C. destructor. Endo-β-1,4-glucanase 1 was only capable of hydrolysing β-1,4-glycosidic bonds and had an optimum pH of 5.5. Endo-β-1,4-glucanases from both species produced some glucose, cellobiose and other short oligomers from the hydrolysis of carboxymethyl cellulose.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polystyrene behaviour in reversed phase high performance liquid chromatography was influenced mainly by the solvent system, but secondary affects were observed depending on the stationary phase. A variety of reversed phase columns were investigated using mobile phase combinations of dichlorom ethane-methanol, dichloromethane-acetonitrile, ethyl acetate-methanol and ethyl acetate-acetonitrile. Several different modes of behaviour were observed depending on the polymer solubility in the solvent system. In the dichloromethane-methanol solvent system, polymer-stationary phase interactions only occurred when the molecules had pore access. Retention of excluded polystyrene depended on the kinetics of precipitation and redissolution of the polymer. Peak splitting and band broadening occurred when the kinetics were slow and molecular weight separations were limited !o oligomers and polystyrenes lower than 5-10(4) dalton. Excellent molecular weight separations of polystyrenes were obtained using gradient elution reversed phase chromatography with a dichloromethane-acetonitrile mobile phase on C18 columns. The retention was based on polymer-stationary phase interactions regardless of the column pore size. Separations were obtained on large diameter pellicular adsorbents that were almost as good as those obtained on porous adsorbents, showing that pore access was not essential for the retention of high molecular weight polystyrenes. In the best example, the separation ranged from the monomer to 10(6) dalton in a single analysis. Very little adsorption of excluded polymers was observed on C8 or phenyl columns. Polystyrene molecular weight separations to 7-10(5) dalton were obtained in an ethyl acetate-acetonitrile solvent system on C18 columns. Adsorption was responsible for retention. When an ethyl acetate-methanol solvent system was used, no molecular weight separations were obtained because of complex peak splitting. Reversed phase chromatography was compared to size exclusion chromatography for the analysis of polydisperse polystyrenes. Similar results were obtained using both methods. However, the reversed phase method was less sensitive to concentration effects and gave better resolution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Endocrine disrupting chemicals (EDCs) constitute a diverse group of chemical compounds which can alter endocrine function in exposed animals. Whilst most studies have focussed on exposure of wildlife to EDCs via aquatic routes, there is the potential for transfer into the terrestrial food chain through consumption of contaminated prey items developing in sewage sludge and waste water at sewage treatment works. In this study, we determine levels of EDCs in aerial insects whose larval stages develop on percolating filter beds at sewage treatment works. We compare absolute concentrations of known EDCs with those collected from aquatic environments not exposed to sewage effluent outflow. Our findings document for the first time that aerial invertebrates developing on sewage filter beds take up a range of chemicals thought to be incorporated from the sewage effluent, which act as endocrine disruptors. For two synthetic chemicals (17α-ethinylestradiol and butylated hydroxy aniline), concentrations were significantly higher in insects captured around percolating filter beds than sites over 2 km from the nearest sewage works. A number of species of insectivorous bats and birds, some of which are declining or threatened, use sewage works as principle foraging sites. We calculate approximate exposure levels for a species of bat known to forage within sewage works and suggest that further research is warranted to assess the ecological implications of consuming contaminated invertebrate prey

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectroscopic and synthetic methods have been exploited to deduce the mechanism for acidic potassium permanganate chemiluminescence. We have employed electron paramagnetic resonance (EPR) spectroscopy with a continuous flow assembly to monitor the formation of radical intermediates in real time generated from substrate oxidation by manganese(VII). These transient species react with manganese(III) in solution to produce the  previously characterized manganese(II)* emission source. Using UV-vis, EPR, attenuated total reflection (ATR)-FTIR, and chemiluminescence spectroscopies, we have established that there are two distinct enhancement mechanisms that in combination afford a 50-fold increase in emission intensity when the reaction is conducted in the presence of phosphate oligomers. In addition to preventing disproportionation of the manganese(III) precursor, the phosphate oligomers form protective "cagelike” structures around the manganese(II)* emitter, thus preventing nonradiative relaxation pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 160 kDa enzyme with β-glucosidase activity was purified from the midgut Gland of the land crab Gecarcoidea natalis. The enzyme was capable of releasing glucose progressively from cellobiose, cellotriose or cellotetraose. Although β-glucosidases (EC 3.2.1.21) have some activity towards substrates longer than cellobiose, the enzyme was classified as a glucohydrolase (EC 3.2.1.74) as it had a preference for larger substrates (cellobiose<cellotriose=cellotetraose). It was able to synthesise some cellotetraose by the transglycosylation of smaller substrates – another common feature of glucohydrolases. The interaction between the glucohydrolase described here and the endo-β-1,4-glucanases described previously for G. natalis provides a complete model for cellulose hydrolysis in crustaceans and possibly in other invertebrates. After mechanical fragmentation by the gastric mill, multiple endo-β-1,4-glucanases would initially cleave β-1,4-glycosidic bonds within native cellulose, releasing small oligomers, including cellobiose, cellotriose and cellotetraose. The glucohydrolase would then attach to these oligomers, progressively releasing glucose. The glucohydrolase might also attach directly to crystalline cellulose to release glucose from free chain ends. This two-enzyme system differs from the traditional model, which suggests that total cellulose hydrolysis requires the presence an endo-β-1,4-glucanse, a cellobiohydrolase and a β-glucosidase

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this report, a novel chemical synthesis of polyaniline/gold nanocomposite is explored using ionic liquid (IL) 1-Butyl-3-methylimidazolium hexafluorophosphate. The direct chemical synthesis of polyaniline/gold nanocomposite was initiated via the spontaneous oxidation of aniline by AuCl4 − in IL. A nearly uniform dispersion of polyaniline/Au particles with a diameter of 450 ± 80 nm was produced by this method, which indicates that this method is more suitable for controlling particle dimensions. It was also found that the electrical conductivity of the polyaniline/gold nanocomposite was more than 100 times higher than that of the pure polyaniline nanoparticles. The polyaniline/gold nanocomposite displays superior function in the biocatalytic activation of microperoxidase-11 because of the high surface area of the assembly and the enhanced charge transport properties of the composite material. We also report the possible application of polyaniline/gold nanocomposite as a H2O2 biosensor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, [Ru(bpy)2(Cpp-L-PNA-OH)]2+ (M1), [Ru(phen)2(Cpp-L-PNA-OH)]2+ (M2), and [Ru(dppz)2(Cpp-L-PNA-OH)]2+ (M3) (bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2′,3′-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and 1H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH2 (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH2 (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH2) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH2), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5′-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3′) showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (Tm) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2·DNA and PNA3·DNA displayed strong electrochemiluminescence (ECL) signals even at submicromolar concentrations. Importantly, the combination of spectrochemical, thermal and ECL properties possessed by the Ru(II)-PNA sequences offer an elegant approach for the design of highly sensitive multimodal biosensing tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lubricin (LUB) is a glycoprotein of the synovial cavity of human articular joints, where it serves as an antiadhesive, boundary lubricant, and regulating factor for the cartilage surface. It has been proposed that these properties are related to the presence of a long, extended, heavily glycosylated and highly hydrated mucinous domain in the central part of the LUB molecule. In this work, we show that LUB has a contour length of 220 ± 30 nm and a persistence length of ≤10 nm. LUB molecules aggregate in oligomers where the protein extremities are linked by disulfide bonds. We have studied the effect of proteolytic digestion by chymotrypsin and removal of the disulfide bonds, both of which mainly affect the N− and C− terminals of the protein, on the adsorption, normal forces, friction (lubrication) forces, and wear of LUB layers adsorbed on smooth, negatively charged mica surfaces, where the protein naturally forms lubricating polymer brush-like layers. After in situ digestion, the surface coverage was drastically reduced, the normal forces were altered, and both the coefficient of friction and the wear were dramatically increased (the COF increased to μ = 1.1−1.9), indicating that the mucinous domain was removed from the surface. Removal of disulfide bonds did not change the surface coverage or the overall features of the normal forces; however, we find an increase in the friction coefficient from μ = 0.02−0.04 to μ = 0.13−1.17 in the pressure regime below 6 atm, which we attribute to a higher affinity of the protein terminals for the surface. The necessary condition for LUB to be a good lubricant is that the protein be adsorbed to the surface via its terminals, leaving the central mucin domain free to form a low-friction, surface-protecting layer. Our results suggest that this “end-anchoring” has to be strong enough to impart the layer a sufficient resistance to shear, but without excessively restricting the conformational freedom of the adsorbed proteins.