7 resultados para Amplitude articulaire

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a turtle-borne camera system, changing flipper beat frequency and amplitude were measured in five diving green turtles (Chelonia mydas Linnaeus 1758) in the Bahía de los Angeles, Mexico (28°58′N, 113°33′W). These observations were made between June and August 2002. Turtles worked hardest (i.e., had the highest flipper beat frequency and amplitude) at the start of descents when positive buoyancy is predicted to oppose their forward motion. During the later part of descents, turtles worked less hard in line with opposing buoyancy forces being reduced. For example, flipper beat frequency declined from about 60–80 beats min−1 at the start of descent to around 25–40 beats min−1 after 30 s of the descent. At the start of ascents the flipper beat frequency was around 30 beats min−1, lower than on descent, and declined as the ascent progressed with often passive gliding for the final few meters to the surface. This pattern of effort during diving appears to apply across a range of marine reptiles, birds and mammals suggesting that graded effort during descent and ascent is an optimum solution to minimising the cost of transport during diving.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In young European starlings, as in other avian species, high-amplitude 24-hr rhythms in plasma and pineal melatonin are already present around the time of hatching. In chickens this rhythmicity results at least partly from the light sensitivity of the melatonin-producing and -secreting system. In contrast to the chicken, the starling is a hole-nesting bird, and it seemed questionable whether the low light intensities in the nest are sufficient to synchronize perinatal melatonin rhythms. We therefore exposed starling eggs to light cycles roughly simulating those measured in nest-boxes, i.e., an 11-hr phase of complete darkness and a 13-hr phase consisting of 15 min of dim light (10 lux) alternating with 30 min of darkness. For one group the photophase lasted from 0600 to 1900 hr; for the other group the photophase lasted from 1800 to 0700 hr. In approximately 10-hr-old hatchlings of both groups, plasma and pineal melatonin concentrations were high during the dark phase and low during the light phase. We conclude that perinatal low-amplitude light intensity changes of the kind experienced by hatching starlings in the field are sufficient for synchronizing the melatonin-producing and -secreting system in the pineal and possibly other organs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article proposes a model to predict uniaxial and multiaxial ratcheting life by addressing the three primary parameters that influence failure life: fatigue damage, ratcheting damage and the multiaxial loading path. These three factors are addressed in the present model by (a) the stress amplitude for fatigue damage, (b) mean stress-dependent Goodman equation for ratcheting damage and (c) an inherent weight factor based on average equivalent stress to account for the multiaxial loading. The proposed model requires only two material constants which can be easily determined from uniaxial symmetric stress-controlled fatigue tests. Experimental ratcheting life data collected from the literature for 1025 and 42CrMo steel under multiaxial proportional and nonproportional constant amplitude loading ratcheting with triangular sinusoidal and trapezoidal waveform (i.e. linear, rhombic, circular, elliptical and square stress paths) have shown good agreement with the proposed model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fatigue lives are reduced accompanying an additional cyclic hardening under strain controlled non-proportional cyclic loading in which principal directions of stress and strain are altered within a cycle. This study predicts non-proportional cyclic hardening and multiaxial fatigue life for several BCC and FCC metals under constant amplitude strain cycling. A novel procedure to determine non-proportional cyclic hardening form uniaxial tensile properties has discussed in this study. Standard plastic strain energy density based fatigue criteria with considering the non-proportional cyclic hardening effect successfully predicts multiaxial fatigue lives. The predictions of non-proportional cyclic hardening and multiaxial fatigue life through models are validated by experimental results of various BCC and FCC metals which are collected from literatures.