2 resultados para Amplitude articulaire

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation consists of three parts. In Part I, it is shown that looping trajectories cannot exist in finite amplitude stationary hydromagnetic waves propagating across a magnetic field in a quasi-neutral cold collision-free plasma. In Part II, time-dependent solutions in series expansion are presented for the magnetic piston problem, which describes waves propagating into a quasi-neutral cold collision-free plasma, ensuing from magnetic disturbances on the boundary of the plasma. The expansion is equivalent to Picard's successive approximations. It is then shown that orbit crossings of plasma particles occur on the boundary for strong disturbances and inside the plasma for weak disturbances. In Part III, the existence of periodic waves propagating at an arbitrary angle to the magnetic field in a plasma is demonstrated by Stokes expansions in amplitude. Then stability analysis is made for such periodic waves with respect to side-band frequency disturbances. It is shown that waves of slow mode are unstable whereas waves of fast mode are stable if the frequency is below the cutoff frequency. The cutoff frequency depends on the propagation angle. For longitudinal propagation the cutoff frequency is equal to one-fourth of the electron's gyrofrequency. For transverse propagation the cutoff frequency is so high that waves of all frequencies are stable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of the finite-amplitude folding of an isolated, linearly viscous layer under compression and imbedded in a medium of lower viscosity is treated theoretically by using a variational method to derive finite difference equations which are solved on a digital computer. The problem depends on a single physical parameter, the ratio of the fold wavelength, L, to the "dominant wavelength" of the infinitesimal-amplitude treatment, L_d. Therefore, the natural range of physical parameters is covered by the computation of three folds, with L/L_d = 0, 1, and 4.6, up to a maximum dip of 90°.

Significant differences in fold shape are found among the three folds; folds with higher L/L_d have sharper crests. Folds with L/L_d = 0 and L/L_d = 1 become fan folds at high amplitude. A description of the shape in terms of a harmonic analysis of inclination as a function of arc length shows this systematic variation with L/L_d and is relatively insensitive to the initial shape of the layer. This method of shape description is proposed as a convenient way of measuring the shape of natural folds.

The infinitesimal-amplitude treatment does not predict fold-shape development satisfactorily beyond a limb-dip of 5°. A proposed extension of the treatment continues the wavelength-selection mechanism of the infinitesimal treatment up to a limb-dip of 15°; after this stage the wavelength-selection mechanism no longer operates and fold shape is mainly determined by L/L_d and limb-dip.

Strain-rates and finite strains in the medium are calculated f or all stages of the L/L_d = 1 and L/L_d = 4.6 folds. At limb-dips greater than 45° the planes of maximum flattening and maximum flattening rat e show the characteristic orientation and fanning of axial-plane cleavage.