45 resultados para Al-cu Alloys

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of rapid solidification processes such as direct strip casting (DSC) is a good way to refine the Fe-intermetallics and decrease their detrimental effects. DSC creates out-ofequilibrium supersaturated microstructures. In this work, we explore the precipitation phenomena in direct strip cast Al-Fe and Al-Cu-Fe alloys and related corrosion and mechanical properties. The precipitates are characterised with differential scanning calorimetry and transmission electron microscopy. The corrosion performances are evaluated with immersion tests and weight loss measurements and the yield strength and ductility are estimated with tensile tests. A strong correlation between the microstructure and the bulk properties is revealed with a significant improvement of properties of DSC alloys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Very recently 63Cu NMR has been shown to be extremely sensitive in detecting and differentiating between the precipitate phases that form in Al-Cu alloys during heat treatment. This technique is now used to quantify the effectiveness of small additions of Sn to the alloy Al-1.7 at.% Cu in promoting the rapid nucleation and growth of the θ'-phase precipitate. Two parallel series of 63Cu NMR spectra were recorded for Al-1.7 at.% Cu and Al-1.7 at.% Cu-0.01 at.% Sn: (i) aged at 130° C to observe the comparative rate of phase evolution and (ii) aged at 200° C to observe the rate of growth of θ'-phase and to compare with the Vickers hardness of the alloys aged at 200° C for similar periods. Evidence is presented that a metastable precursor phase to θ' (labelled TPHM2757math001) is formed in Al-Cu-Sn which transforms to θ' on further aging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microalloying trace elements into aluminum alloys have been shown to improve mechanical properties by altering the precipitation process. Here, trace amounts of Sn and (Sn + Ag) have been added to Al-1.1Cu-1.7Mg (at.%) and the effects have been investigated by a combination of hardness testing and transmission electron microscopy (TEM). Hardness testing shows that the addition of Sn increases the hardness throughout the ageing process, and in combination with Ag, further increases the hardness and shortens the time to reach the peak hardness. The increase in hardness via Sn microalloying is attributed to the homogeneous distribution of S phase (Al2CuMg) precipitates. In the alloy microalloyed with both Sn and Ag, the microstructure is dominated by homogeneously distributed Ω phase (Al2Cu) precipitates in the peak strengthened condition. Given that neither spherical β-Sn precipitates, nor any other obvious nucleation sites for the Ω phase precipitates were observed using TEM, the mechanism for development of such homogeneous precipitation remains to be determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of Fe in Al is technologically important for commercial Al-alloys, and in recycled Al. This work explores the use of the novel rapid solidification technology, known as direct strip casting, to improve the recyclability of Al-alloys. We provide a comparison between the corrosion and microstructure of Al-Fe alloys prepared with wide-ranging cooling rates (0.1. °C/s to 500. °C/s). Rapid cooling was achieved via direct strip casting, while slow cooling was achieved using sand casting. Corrosion was studied via polarisation and immersion tests, followed by surface analysis using scanning electron microscopy and optical profilometry. It was shown that the corrosion resistance of Al-Fe alloys is improved with increased cooling rates, attributed to the reduced size and number of Fe-containing intermetallics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a hypothesis and its experimental validation that simultaneous improvement in the hardness and corrosion resistance of aluminium can be achieved by the combination of suitable processing route and alloying additions. More specifically, the corrosion resistance and hardness of Al- xCr (x= 0-10 wt.%) alloys as produced via high-energy ball milling were significantly higher than pure Al and AA7075-T651. The improved properties of the Al- xCr alloys were attributed to the Cr addition and high-energy ball milling, which caused nanocrystalline structure, extended solubility of Cr in Al, and uniformly distributed fine intermetallic phases in the Al-Cr matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical behavior under uniaxial tension of Al-Mg alloy 5182 pre-deformed in conventional rolling (CR), asymmetric rolling-continuous (ASRC), and asymmetric rolling-reversed (ASRR) was investigated and modeled with a rate dependent crystal plasticity finite element method and VPSC (Visco-Plastic Self Consistent) model. M-K theory combined with Yld2000 model by Barlat et al. (Int. J. Plasticity 2003, 19, 1297) was used to predict the strain-based and stress-based formability for AA 5182 material. It was concluded that the new ASRR process has very compatible formability with improved strength compared to CR process. These merits can be directly applied for clam-shell resistant design in rigid-packaging industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain microstructure on the age-hardening behavior is investigated on recrystallized and un-recrystallized Al-Cu-Li alloys by combining electron-backscatter-diffraction and micro-hardness mapping. The spatial heterogeneity of micro-hardness is found to be strongly dependent on the grain microstructure. Controlled experiments are carried out to change the pre-strain before artificial ageing. These experiments lead to an evaluation of the range of local strain induced by pre-stretching as a function of the grain microstructure and results in heterogeneous formation of the hardening T1 precipitates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The effect of chromate on metastable pitting of AA7075-T651 as determined via potentiostatic polarisation is reported. A systematic study of metastable pitting and its correlation with stable pits was conducted in various concentrations of sodium chromate (Na2CrO4), revealing the metastable pitting rate was able to provide a quantitative metric for pitting corrosion. The size and number of metastable pits decreased significantly in the presence of chromate. The present study is intended as a general baseline for the assessment of future chromate replacement technologies, as elaborated herein. © 2014 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using Titanium (Ti) foam as an implant material is a new approach for biomedical applications and it is important to understand the mechanical behaviors of this new foam material. In the present study, the bending of the Ti foam has been simulated and compared against recently published data [1]. FE Analysis has been performed by Abaqus software. Stiffness and Yield strength of foams between 50% (cortical bone) to 80% (cancellous bone) porosity range were considered. This study showed that crushable foam material model in Abaqus, which has developed primarily for Aluminum (Al) foam alloys, is also valid for Ti Foam before any crack or damage occurs in the sample.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Abstract The decomposition sequence of the supersaturated solid solution leading to the formation of the equilibrium S (Al2CuMg) phase in AlCuMg alloys has long been the subject of ambiguity and debate. Recent high-resolution synchrotron powder diffraction experiments have shown that the decomposition sequence does involve a metastable variant of the S phase (denoted S1), which has lattice parameters that are distinctly different to those of the equilibrium S phase (denoted S2). In this paper, the difference between these two phases is resolved using high-resolution synchrotron and neutron powder diffraction and atom probe tomography, and the transformation from S1 to S2 is characterised in detail by in situ synchrotron powder diffraction. The results of these experiments confirm that there are no significant differences between the crystal structures of S1 and S2, however, the powder diffraction and atom probe measurements both indicate that the S1 phase forms with a slight deficiency in Cu. The in situ isothermal aging experiments show that S1 forms rapidly, reaching its maximum concentration in only a few minutes at high temperatures, while complete conversion to the S2 phase can take thousands of hours at low temperature. The kinetics of S phase precipitation have been quantitatively analysed for the first time and it is shown that S1 phase forms with an average activation energy of 75 kJ/mol, which is much lower than the activation energy for Cu and Mg diffusion in an Al matrix (136 kJ/mol and 131 kJ/mol, respectively). The mechanism of the replacement of S1 with the equilibrium S2 phase is discussed.