69 resultados para 250203 Solid State Chemistry

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis of [R2Sn(H2O)2(OPPh3)2](O3SCF3)2 (R = Me (1), Bu (2)) by the consecutive reaction of R2SnO (R = Me, Bu) with triflic acid and Ph3PO is described. Compounds 1 and 2 feature dialkyltin(IV) dications [R2Sn(H2O)2(OPPh3)2]2+ apparently stabilized by the neutral ligands in the solid state. Compounds 1 and 2 readily dehydrate upon heating at 105 and 86 °C, respectively. The preparative dehydration of 1 afforded [Me2Sn(OPPh3)2(O3SCF3)](O3SCF3) (1a), which features both bidentate and non-coordinating triflate anions. In compounds 1 and 2 the ligands Ph3PO and H2O are kinetically labile in solution and undergo reversible ligand exchange reactions. Compounds 1, 1a and 2 were characterized by multinuclear solution and solid-state NMR spectroscopy, IR spectroscopy, electrospray mass spectrometry, conductivity measurements, thermogravimetry and X-ray crystallography.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural investigations, i.e. solid-state (X-ray), solution (1H NMR) and gas-phase (theoretical), on molecules with the general formula MeOC(S)N(H)C6H4-4-Y: Y = H (1), NO2 (2), C(O)Me (3), Cl (4) have shown a general preference for the adoption of an E-conformation about the central C–N bond. Such a conformation allows for the formation of a dimeric hydrogen-bonded {H–N–C=S}2 synthon as the building block. In the cases of 1–3, additional C–H...O interactions give rise to the formation of tapes of varying topology. A theoretical analysis shows that the preference for the E-conformation is about the same as the crystal packing stabilisation energy and consistent with this, the compound with Y = C(O)OMe, (5), adopts a Z-conformation in the solid-state that facilitates the formation of N–H...O, C–H...O and C–H...S interactions, leading to a layer structure. Global crystal packing considerations are shown to be imperative in dictating the conformational form of molecules 1–5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The binary and ternary addition of 2 wt.% LiBF4 and 2 wt.% amorphous polyethylene oxide (aPEO) respectively to the plastic crystal forming salt P13BF4 (where P13+=methylpropyl pyrrolidinium cation) was investigated with specific focus on the phase behaviour and evaluation of transport characteristics. Differential scanning calorimetry (DSC), optical thermomicroscopy, solid state nuclear magnetic resonance (NMR), and AC impedance spectroscopy were used to develop an understanding of the conduction process in the pure and mixed systems. The morphology of the ternary compound appeared as hexagonal spherulites upon solidification. Multinuclear NMR Pulsed Field Gradient measurements (1H,19F,7Li) to probe both cation and anion diffusion coefficients are reported. The anion is shown to be the most diffusive (at 320 K:19F=2.5×10−11 m2 s−1; 1H: 1.8×10−11 m2 s−1; 7Li: 1.1×10−11 m2 s−1) in the ternary compound, with enhanced conductivity (2.7×10−5 S cm−1 at 310 K) just below the melt.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choline dihydrogen phosphate has previously been shown to be a good ionic conductor as well as an excellent host for acid doping, leading to high proton conductivities required for e.g., electrochemical devices including proton membrane fuel cells and sensors. A combination of variable-temperature 1H solid-state NMR and 2D NMR pulse sequences, including 31P and 13C CODEX and 1H BaBa, show that the proton conduction mechanism primarily involves assisted transport via a restricted three-site motion of the phosphate unit around the P–O bond that is hydrogen bonded to the choline and exchange of protons between these anions. In other words, proton transport at ambient temperatures appears to occur most favorably along the crystallographic b axis, from phosphate dimer to dimer. At elevated temperatures exchange between the protons of the hydroxyl group on the choline cation and the hydrogen-bonded dihydrogen phosphate groups also contributes to the structural diffusion of the protons in this solid state conductor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dye-sensitized solar cells are an increasingly promising alternative to conventional silicon solar cells as a method of converting solar energy to electricity and thus providing an effectively inexhaustible energy source. However, the most efficient of these devices currently utilize liquid electrolytes, which suffer from the associated problems of leakage and evaporation. Hence, significant research is currently focused on the development of solid state alternatives. Here we report a new class of solid state electrolyte for these devices, organic ionic plastic crystal electrolytes, that allow relatively rapid diffusion of the redox couple through the matrix, which is critical to the cell performance. A range of different organic ionic plastic crystal materials, utilizing different cation and anion structures, have been investigated and the conductivities, diffusion rates and photovoltaic performance of the electrolytes are reported. The best material, utilizing the dicyanamide anion, achieves efficiencies of more than 5%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe a porphyrin dye-sensitised solar cell utilising a solid state electrolyte containing the I¯/I3¯ redox couple, which yields a performance of 5.3% under moderate light intensity and 4.8% at full sun.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

All solid-state organic ionic plastic crystal–polymer nanofibre composite electrolytes are described for the first time. The new composite materials exhibit enhanced conductivity, excellent thermal, mechanical and electrochemical stability and allow the production of optically transparent, free-standing, flexible, thin film electrolytes (10’s lms thick) for application in electrochemical devices. Stable cycling of a lithium cell incorporating the new composite electrolyte is demonstrated, including cycling at lower temperatures than previously possible with the pure material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Knowledge of ion exchange and transport behavior in electrolyte materials is crucial for designing and developing novel electrolytes for electrochemical device applications such as fuel cells or batteries. In the present study, we show that, upon the addition of triflic acid (HTf) to the guanidinium triflate (GTf) solid-state matrix, several orders of magnitude enhancement in the proton conductivity can be achieved. The static 1H and 19F solid-state NMR results show that the addition of HTf has no apparent effect on local molecular mobility of the GTf matrix at room temperature. At higher temperatures, however, the HTf exhibits fast ion exchange with the GTf matrix. The exchange rate, as quantified by our continuum T2 fitting analysis, increases with increasing temperature. The activation energy for the chemical exchange process was estimated to be 58.4 kJ/mol. It is anticipated that the solid-state NMR techniques used in this study may be also applied to other organic solid-state electrolyte systems to investigate their ion-exchange processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A range of solid-state NMR techniques is used to characterise a molecular host:guest complex consisting of a [5]polynorbornane bisurea host binding a terephthalate dianion guest. Detailed information is obtained on the molecular dynamics and associations from the point of view of both the host and guest molecules. The formation of the complex in the solid state is confirmed using (1)H 2D exchange NMR, and the 180° flipping of the (2)H-labelled terephthalate guest and its eventual expulsion from the complex at elevated temperatures are quantified using variable-temperature (2)H spin-echo experiments. Two-dimensional (1)H-(13)C HETCOR spectra obtained under fast magic angle spinning conditions (60 kHz) show a high resolution despite the poor crystallinity of the solid complex, and clearly reveal changes in the rigidity of the host molecule when complexed. Short-range intra- and intermolecular (1)H-(1)H proximities are also detected using 2D SQ-DQ correlation methods, providing insight into the molecular packing in the solid phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen-14 solid-state NMR (SSNMR) is utilized to differentiate three polymorphic forms and a hydrochloride (HCl) salt of the amino acid glycine. Frequency-swept Wideband, Uniform Rate, Smooth Truncated (WURST) pulses were used in conjunction with Carr-Purcell Meiboom-Gill refocusing, in the form of the WURST-CPMG pulse sequence, for all spectral acquisitions. The 14N quadrupolar interaction is shown to be very sensitive to variations in the local electric field gradients (EFGs) about the 14N nucleus; hence, differentiation of the samples is accomplished through determination of the quadrupolar parameters CQ and ηQ, which are obtained from analytical simulations of the 14N SSNMR powder patterns of stationary samples (i.e., static NMR spectra). Additionally, differentiation of the polymorphs is also possible via the measurement of 14N effective transverse relaxation time constants, Teff2(14N). Plane-wave density functional theory (DFT) calculations, which exploit the periodicity of crystal lattices, are utilized to confirm the experimentally determined quadrupolar parameters as well as to determine the orientation of the 14N EFG tensors in the molecular frames. Several signal-enhancement techniques are also discussed to help improve the sensitivity of the 14N SSNMR acquisition method, including the use of selective deuteration, the application of the BRoadband Adiabatic INversion Cross-Polarization (BRAIN-CP) technique, and the use of variable-temperature (VT) experiments. Finally, we examine several cases where 14N VT experiments employing Carr-Purcell-Meiboom-Gill (CPMG) refocusing are used to approximate the rotational energy barriers for RNH3+ groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state ion conductors based on organic ionic plastic crystals (OIPCs) are a promising alternative to conventional liquid electrolytes in lithium battery applications. The OIPC-based electrolytes are safe (nonflammable) and flexible in terms of design and operating conditions. Magnetic resonance imaging (MRI) is a powerful noninvasive method enabling visualization of various chemical phenomena. Here, we report a first quantitative in situ MRI study of operating solid-state lithium cells. Lithium ion transfer into the OIPC matrix during the ongoing discharge of the anode results in partial liquefaction of the electrolyte at the metal interface. The developed liquid component enhances the ion transport across the interface and overall battery performance. Displacement of the liquefaction front is accompanied by a faster Li transfer through the grain boundaries and depletion at the cathode. The demonstrated solid-liquid hybrid properties, inherent in many OIPCs, combine benefits of highly conductive ionic liquids with safety and flexibility of solids.