10 resultados para 1ST-PRINCIPLES CALCULATIONS

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Noncovalent recognition between peptides and inorganic materials is an established phenomenon. Key to exploiting these interactions in a wide range of materials self-assembly applications would be to harness the facet-selective control of peptide binding onto these materials. Fundamental understanding of what drives facet-selectivity in peptide binding is developing, but as yet is not sufficient to enable design of predictable facet-specific sequences. Computational simulation of the aqueous peptide-gold interface, commonly used to understand the mechanisms driving adsorption at an atomic level, has thus far neglected the role that surface reconstruction might play in facet specificity. Here the polarizable GolP-CHARMM suite of force fields is extended to include the reconstructed Au(100) surface. The force field, compatible with the bio-organic force field CHARMM, is parametrized using first-principles data. Our extended force field is tailored to reproduce the heterogeneity of weak chemisorbing N and S species to specific locations in the Au(100)(5 × 1) surface identified from the first-principles calculations. We apply our new model to predict and compare the three-dimensional structure of liquid water at Au(111), Au(100)(1 × 1), and Au(100)(5 × 1) interfaces. Using molecular dynamics simulations, we predict an increased likelihood for water-mediated peptide adsorption at the aqueous-Au(100)(1 × 1) interface compared with the Au(100)(5 × 1) interface. Therefore, our findings suggest that peptide binding can discriminate between the native and reconstructed Au(100) interfaces and that the role of reconstruction on binding at the Au(100) interface should not be neglected. © 2013 American Chemical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The structural behavior of Mg3N2 has been investigated up to 40.7 GPa at room temperature by means of angle-dispersive X-ray diffraction. A reversible, first-order structural phase transition from the ambient cubic phase (Ia3̅) to a high-pressure monoclinic phase (C2/m) is found to start at ~ 20.6 GPa and complete at ~ 32.5 GPa for the first time. The equation of state determined from our experiments yields bulk moduli of 110.7(2) and 171.5(1) GPa for the cubic and monoclinic phases, respectively, indicating higher incompressibility of the high-pressure phase of Mg3N2. First-principles calculations reproduced the phase stability and transition pressure determined in our experiment. In addition, a second phase transition from the monoclinic phase to a hexagonal phase (P3̅m1) was predicted around 67 GPa for Mg3N2. The electronic band structures of three phases of Mg3N2 are also calculated and discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pretty vacancy: The formation energy of Al vacancies in aluminum nitride is decreased by doping with nonmagnetic scandium ions. These vacancies are shown to be the cause of the room-temperature ferromagnetism in the resulting 1D hexagonal nanoprisms of AlN:Sc, a result that is confirmed by first-principles calculations. The doping approach provides a new route to dilute magnetic semiconductor materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two-dimensional (2D) hexagonal boron nitride (BN) nanosheets are excellent dielectric substrate for graphene, molybdenum disulfide, and many other 2D nanomaterial-based electronic and photonic devices. To optimize the performance of these 2D devices, it is essential to understand the dielectric screening properties of BN nanosheets as a function of the thickness. Here, electric force microscopy along with theoretical calculations based on both state-of-the-art first-principles calculations with van der Waals interactions under consideration, and nonlinear Thomas-Fermi theory models are used to investigate the dielectric screening in high-quality BN nanosheets of different thicknesses. It is found that atomically thin BN nanosheets are less effective in electric field screening, but the screening capability of BN shows a relatively weak dependence on the layer thickness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen is considered one of the best energy sources. However, the lack of effective, stable, and safe storage materials has severely prevented its practical application. Strong effort has been made to try new nanostructured materials as new storage materials. In this study, oxygen-doped boron nitride (BN) nanosheets with 2-6 atomic layers, synthesized by a facile sol-gel method, show a storage capacity of 5.7wt% under 5MPa at room temperature, which is the highest hydrogen storage ever reported for any BN materials. Importantly, 89% of the stored hydrogen can be released when the hydrogen pressure is reduced to ambient conditions. Furthermore, the BN nanosheets exhibit an excellent storage cycling stability due to the stable two-dimensional nanostructure. The first principles calculations reveal that the high hydrogen storage mainly origins from the oxygen-doping of the BN nanosheets with increased adsorption energies of H2 on BN by 20-80% over pure BN sheets at the different coverage. © 2014 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Until now, it has been a challenge both in experiment and in theory to design new superhard materials with high hardness values that are comparable to that of diamond. Here, by using first-principles calculations, we have introduced two new phases for a carbon-rich C-N compound with stoichiometry C3N, which is predicted to be energetically stable or metastable with respect to graphite and solid N2 at ambient pressure. It is found that C3N has a layered structure containing graphitic layers sandwiched with freely rotated N2 molecules. The layer-structured C3N is calculated to transform into a three-dimensional C2221 structure at 9 GPa with sp3-hybridized C atoms and sp2-hybridized N atoms. Phonon dispersion and elastic constant calculations reveal the dynamical and mechanical stability of the C2221 phase of C3N at ambient pressure. Significantly, first-principles ideal strength calculations indicate that the C2221 phase of C3N is a superhard material with an estimated Vickers hardness (∼76 GPa) comparable to that of diamond (60-120 GPa). The present results shed strong light on designing new superhard materials in the C-N system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The operation of many nanostructured biomolecular sensors and catalysts critically hinges on the manipulation of non-covalent adsorption of biomolecules on unfunctionalised noble-metal nanoparticles (NMNPs). Molecular-level structural details of the aqueous biomolecule/NMNP interface are pivotal to the successful realisation of these technologies, but such experimental data are currently scarce and challenging to obtain. Molecular simulations can generate these details, but are limited by the assumption of non-preferential adsorption to NMNP features. Here, via first principles calculations using a vdW-DF functional, and based on nanoscale sized NMNPs, we demonstrate that adsorption preferences to NP features vary with adsorbate chemistry. These results show a clear distinction between hydrocarbons, that prefer adsorption to facets over edges/vertices, over heteroatomic molecules that favour adsorption onto vertices over facets. Our data indicate the inability of widely used force-fields to correctly capture the adsorption of biomolecules onto NMNP surfaces under aqueous conditions. Our findings introduce a rational basis for the development of new force-fields that will reliably capture these phenomena.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titrations are common laboratory exercises in high school and university chemistry courses, because they are easy, relatively inexpensive, and they illustrate a number of fundamental chemical principles. While students have little difficulty with calculations involving a single titration step, there is a significant leap in conceptual difficulty when “scaling-up” to more involved titration calculations with two or more steps. Currently, there is no alternative approach for students who are unable to follow the standard textbook method for titration calculations. This paper presents a new method of setting out the titration calculations, which helps these weaker students to better organize the data. The connection between the new method and current models of learning is discussed to explain why the tabular approach is successful for students who have difficulty following the standard textbook method.