127 resultados para epoxy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Broad antifungal structure-activity relationships governing epoxy-endoperoxides 2 and 3 and their parent endoperoxides 1 are reported. Their inhibitory activity against Candida albicans in conjunction with hemolytic activity and/or growth inhibition of cultured mammalian cells are reported. This information provided guidance for the further development of endoperoxide and epoxy-endoperoxides as topical antifungal agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the synthesis of a series of novel epoxy endoperoxide compounds that can be prepared in high yields in one to three steps from simple starting materials. Some of these compounds inhibit the growth of Plasmodium falciparum in vitro. Structure-activity studies indicate that an endoperoxide ring bisubstituted with saturated cyclic moieties is the pharmacophore. To study the molecular basis of the action of these novel antimalarial compounds, we examined their ability to interact with oxidized and reduced forms of heme. Some of the compounds interact with oxidized heme in a fashion similar to chloroquine and other 4-aminoquinolines, while some of the compounds interact with reduced heme. However, the level of antimalarial potency is not well correlated with these activities, suggesting that some of the endoperoxides may exert their antimalarial activities by a novel mechanism of action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we report the effect of multi-walled carbon nanotubes (MWCNTs) and thermally reduced graphene (TRG) on the miscibility, morphology and final properties of nanostructured epoxy resin with an amphiphilic poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer. The addition of nanoparticles did not have any influence on the miscibility of PEO-PPO-PEO copolymer in the resin. However, MWCNTs and TRG reduced the degree of crystallinity of the PEO-rich microphases in the blends above 10 wt.% of copolymer while they did not change the phase morphology at the nanoscale, where PPO spherical domains of 20-30 nm were found in all the samples studied. A synergic effect between the self-assembled nanostructure and the nanoparticles on the toughness of the cured resin was observed. In addition, the nanoparticles minimized the negative effect of the copolymer on the elastic modulus and glass transition temperature in the resin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the design and synthesis of a polymer structure from a cross-linkable epoxy-ionic liquid system which behaves like a hard and brittle epoxy thermoset, perfectly ductile thermoplastic and an elastomer, all depending on controllable network compositions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015 Elsevier Ltd. All rights reserved. Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene's macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π-π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π-π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV-vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disbondment of protective organic coatings under excessive cathodic protection potentials is a widely reported coating failure mechanism. Traditional methods of evaluating cathodic disbondment are based on ex situ visual inspection of coated metal surfaces after being exposed to standard cathodic disbondment testing conditions for a long period of time. Although electrochemical impedance spectroscopy (EIS) has been employed as an effective means of evaluating various anti-corrosion properties of organic coatings; its application for assessing the cathodic disbondment resistance of coatings has not been sufficiently exploited. This paper reports an experimental study aimed at developing EIS into a tool for in situ measurement and monitoring of cathodic disbondment of coatings. A clear correlation between EIS parameters and the disbonded coating areas has been confirmed upon short term exposure of epoxy-coated steel electrodes to cathodic disbondment conditions; however the degree of this correlation was found to decrease with the extension of exposure duration. This observation suggests that EIS loses its sensitivity with the propagation of coating disbondment, and that in order to achieve quantitative determination of the coating cathodic disbondment localized EIS measurements are required to measure the parameters related to local disbonded areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fibre reinforced polymer (CFRP) sheet has gained its popularity to retrofit civil structures which is bonded externally, typically on the soffit of a beam. In this study, the bond between carbon fibre reinforced polymer (CFRP) and concrete is improved by modifying the property of commercial epoxy and compared against normal epoxy. The deterioration in bond strength was produced by placing the beam into salt water under wet dry cycles. Also, a model is proposed to determine the bond strength from flexural test and compared against the available bond strength models which are typically obtained from pull out test. This proposed model shows promising results in terms of predicting the bond strength from flexural test. In addition, a strength reduction factor is introduced to incorporate the effect of wet dry cycles to predict the long term behaviour. It is found that the modified epoxy enhance the ductile property and bond strength.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, we have reported a method for producing photochromic wool fabric by applying a thin layer of hybrid silica-photochromic dye onto the wool surface. While the photochromic coating showed a very fast optical response and had little influence on the fabric handle, its durability was poor. In this study, the durability of the photochromic coating layer was improved by introducing epoxy groups into the silica matrix via co-hydrolysis and co-condensation of an alkyl trialkoxysilane compound (ATAS) and 3-glycidoxypropyltrimethoxysilane (GPTMS). The presence of epoxy groups in the silica enhanced both washing and abrasion durability or fastness. In addition, the optical response speed was slightly increased as well. Effects of the type of alkyl silane and the GPTMS/alkyl silane ratio on the coating durability, fabric handle and optical response were examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In an ongoing effort to rationally design new antimicrobials, 47 new 1,2-dioxines have been synthesised. Broad antifungal structure-activity relationships governing aromatically substituted epoxy-1,2-dioxines 2 and 3 and their parent 1,2-dioxines 1 were assessed primarily against the pathogenic yeast, Candida albicans, with haemolytic activity of selected examples also reported.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solving the problem of pre mature debonding of CFRP retrofitted structure is a main concern for most of structural engineers nowadays. Reducing the brittleness of the bonding agent at the CFRP/concrete interface is a major factor to avoid this behaviour. In this research, the effect of modifying the bonding agent using different percentages of ionic liquid (IL) is investigated. This paper reports on an experimental investigation on the behaviour of modified epoxy resin with IL. Steel plates were used as hosting surface of the CFRP laminates, the laminates were attached to the steel surface using the IL modified epoxy. The shear mechanism at the interface of CFRP laminates to steel plates is discussed considering the relationship between the shear and the slip at the interface. The shear stress- displacement are traced for all specimens, the results are compared with control test prepared using unmodified epoxy. A 20% IL modified epoxy shows improved Behaviour. The improvement is with respect to ductility enhancement of the overall behaviour.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new route of tethering graphene nanoplatelets (GNPs) with Fe3O4 nanoparticles to enable their alignment in an epoxy using a weak magnetic field. The GNPs are first stabilised in water using polyvinylpyrrolidone (PVP) and Fe3O4 nanoparticles are then attached via co-precipitation. The resultant Fe3O4/PVP-GNPs nanohybrids are superparamagnetic and can be aligned in an epoxy resin, before gelation, by applying a weak magnetic field as low as 0.009 T. A theoretical model describing the alignment process is presented and used to quantify the effects of key parameters on the time needed for the alignment process. Compared to the unmodified epoxy, the resulting epoxy polymer nanocomposites containing randomly-oriented Fe3O4/PVP-GNPs nanohybrids exhibit significantly improved electrical conductivities by up to three orders of magnitude and fracture energies by up to 300%. The alignment of the Fe3O4/PVP-GNPs nanohybrids in the epoxy polymer nanocomposites transverse to the direction of crack propagation further increased the fracture energy by 50%, and the electrical conductivity by seven fold in the alignment direction, compared to the nanocomposites containing randomly-oriented nanohybrids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Linoleic acid (LA) is a major constituent of low-density lipoproteins. An essential fatty acid, LA is a polyunsaturated fatty acid, which is oxidised by endogenous enzymes and reactive oxygen species in the circulation. Increased levels of low-density lipoproteins coupled with oxidative stress and lack of antioxidants drive the oxidative processes. This results in synthesis of a range of oxidised derivatives, which play a vital role in regulation of inflammatory processes. The derivatives of LA include, hydroxyoctadecadienoic acids, oxo-​octadecadienoic acids, epoxy octadecadecenoic acid and epoxy-keto-octadecenoic acids. In this review, we examine the role of LA derivatives and their actions on regulation of inflammation relevant to metabolic processes associated with atherogenesis and cancer. The processes affected by LA derivatives include, alteration of airway smooth muscles and vascular wall, affecting sensitivity to pain, and regulating endogenous steroid hormones associated with metabolic syndrome. LA derivatives alter cell adhesion molecules, this initial step, is pivotal in regulating inflammatory processes involving transcription factor peroxisome proliferator-activated receptor pathways, thus, leading to alteration of metabolic processes. The derivatives are known to elicit pleiotropic effects that are either beneficial or detrimental in nature hence making it difficult to determine the exact role of these derivatives in the progress of an assumed target disorder. The key may lie in understanding the role of these derivatives at various stages of development of a disorder. Novel pharmacological approaches in altering the synthesis or introduction of synthesised LA derivatives could possibly help drive processes that could regulate inflammation in a beneficial manner. Chemical Compounds: Linoleic acid (PubChem CID: 5280450), 9- hydroxyoctadecadienoic acid (PubChem CID: 5312830), 13- hydroxyoctadecadienoic acid (PubChem CID: 6443013), 9-oxo-​octadecadienoic acid (PubChem CID: 3083831), 13-oxo-​octadecadienoic acid (PubChem CID: 4163990), 9,10-epoxy-12-octadecenoate (PubChem CID: 5283018), 12,13-epoxy-9-keto-10- trans -octadecenoic acid (PubChem CID: 53394018), Pioglitazone (PubChem CID: 4829).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An enhanced mandrel bend testing method has been proposed for the evaluation of the maximum strain level that could be tolerated by an organic coating, and for the understanding of localised coating deformation and cracking behaviours under nonuniform mechanical strains. The aim is to develop a practical method that is suitable for selecting pipeline coatings in order to ensure that the selected coatings have sufficient flexibility to meet the high strain demand during the construction, hydrostatic testing and operation of high pressure pipelines. Two new mandrel bend testing setups have been designed by employing either centre or end clamps in order to improve the uniformity of strain distributions over coated steel coupons, and by using strain gauges to perform in situ measurements of local strains. A series of tests have been carried out to evaluate the new method for testing the flexibility of selected epoxy based pipeline industry coatings. Preliminary computational simulation has also been carried out for assisting the interpretation of mandrel bending test results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new route to prepare nanostructured thermosets by the utilization of intermolecular hydrogen-bonding interactions is demonstrated here. In this study, competitive hydrogen-bonding-induced microphase separation (CHIPS) in epoxy resin (ER) containing an amphiphilic block copolymer poly(ε-caprolactone)-block-poly(2-vinylpyridine) (PCL-b-P2VP) is investigated for the first time. The phase separation takes place due to the disparity in the hydrogen-bonding interactions in ER/P2VP and ER/PCL pairs leading to the formation of ordered nanostructures in the ER/block copolymer blends. SAXS and TEM results indicate that the hexagonally packed cylindrical morphology of neat PCL-b-P2VP block copolymer remains but becomes a core-shell structure at 10 wt % addition of ER, and changes to regular lamellae structures at 20-50 wt % then to disordered lamellae with 60 wt % ER. Wormlike structures are obtained in the blends with 70 wt % ER, followed by a completely homogeneous phase of ER/P2VP and ER/PCL. The formation of nanostructures and changes in morphologies depend on the relative strength of hydrogen-bonding interactions between each component block copolymer and the homopolymer. This versatile method to develop nanostructured thermosets, involving competitive hydrogen-bonding interactions, could be used for the fabrication of hierarchical and functional materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of amphiphilic poly(ethylene glycol)-block-poly(bisphenol A carbonate) (PEG-b-PC) block copolymer is presented here using a simple bio-chemistry coupling reaction between poly(bisphenol A carbonate) (PC) with a monomethylether poly(ethylene glycol) (mPEG-OH) block, mediated by dicyclohexylcarbodiimide/4-dimethylaminopyridine. This method inherently allows great flexibility in the choice of starting materials as well as easy product purification only requiring phase separation and water washing. Collective data from Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR) and modulated dynamic scanning calorimetry (MDSC) confirmed the successful attachment of the poly(ethylene glycol) (mPEG-OH) and poly(bisphenol A carbonate) (PC) blocks. The preparation of nano-capsules was carried out by sudden addition of water to PEG-b-PC copolymers dispersed in THF, resulting in the controlled precipitation (i.e. thermodynamic entrapment) of the copolymer. Nano-capsules as small as 85 nm ± 30 nm were produced using this simple and fast methodology. We also demonstrate that encapsulating a water-insoluble bisphenol A diglycidyl ether (DGEBA) epoxy resin is possible highlighting the potential use of these capsules as a chemical delivery system.