116 resultados para Super-conducting coils


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A general method for the generation of two-dimensional (2D) ordered, large-area, and liftable conducting polymer-nanobowl sheet has been demonstrated via chemical polymerization for the first time. The sheet is made using the monolayer self-assembled from polystyrene (PS) spheres at the aqueous/air interface as template, followed by depositing conducting polymer on the part of PS monolayer submerging in the aqueous phase via chemical polymerization, and core extraction. During the process of polymerization, no substrate is required, which caused the as-prepared patterned conducting polymer sheet can be easily lifted-off and deposited, in full size, on any flat substrate. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectrum were used to characterize the products

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Super-resolution is an image enhancement method that increases the resolution of images and video. Previously this technique could only be applied to 2D scenes. The super-resolution algorithm developed in this thesis creates high-resolution views of 3-dimensional scenes, using low-resolution images captured from varying, unknown positions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pediatric palliative care randomized controlled trials (PPC-RCTs) are uncommon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of austenite grain size on the kinetics of the isothermal bainitic transformation in a high-carbon super-bainitic steel was investigated. Experimental results showed that the transformation of super bainite was accelerated by a coarse austenite grain size. This is because while coarse austenite grains provide less nucleation sites, it is beneficial for bainite sheaf growth. Meanwhile, there is a critical austenite grain size below which there is a distinct grain size effect and above which it is not evident. © 2014 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a deep cryogenic treatment on the microstructure of a super-bainitic steel was investigated. It was shown that quenching the super-bainitc steel in -196°C liquid nitrogen resulted in the transformation of retained austenite to two phases: ~20 nm thick martensite films and some nano carbides with a ~25 nm diameter. Some refinement of the retained austenite occurred, due to formation of fine martensite laths within the retained austenite. The evolution of these new phases resulted in an increase in the average hardness of the super-bainitic steel from 641 to ~670 HV1. © 2014 ISIJ.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible energy devices with high performance and long-term stability are highly promising for applications in portable electronics, but remain challenging to develop. As an electrode material for pseudo-supercapacitors, conducting polymers typically show higher energy storage ability over carbon materials and larger conductivity than transition-metal oxides. However, conducting polymer-based supercapacitors often have poor cycling stability, attributable to the structural rupture caused by the large volume contrast between doping and de-doping states, which has been the main obstacle to their practical applications. Herein, we report a simple method to prepare a flexible, binder-free, self-supported polypyrrole (PPy) supercapacitor electrode with high cycling stability through using novel, hollow PPy nanofibers with porous capsular walls as a film-forming material. The unique fiber structure and capsular walls provide the PPy film with enough free-space to adapt to volume variation during doping/de-doping, leading to super-high cycling stability (capacitance retention > 90% after 11000 charge-discharge cycles at a high current density of 10 A g-1) and high rate capability (capacitance retention ∼ 82.1% at a current density in the range of 0.25-10 A g-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large-strain elastic superhydrophobicity is highly desirable for its enhanced use performance and functional reliability in mechanically dynamic environments, but remains challenging to develop. Here we have, for the first time, proven that an elastic fibrous membrane after surface hydrophobization can maintain superhydrophobicity during one-directional (uniaxial) stretching to a strain as high as 1500% and two-direction (biaxial) stretching to a strain up to 700%. The fibrous membrane can withstand at least 1,000 cycles of repeated stretching without losing the superhydrophobicity. Stretching slightly increases the membrane air permeability and reduces water breakthrough pressure. It is highly stable in acid and base environments. Such a permeable, highly-elastic superhydrophobic membrane may open up novel applications in membrane separation, healthcare, functional textile and energy fields.