177 resultados para NEURAL-NETWORK ENSEMBLES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Public installation running throughout the night at Cube 37 gallery. Morphing forms are projected onto the glass front of the gallery, facing the street. Human perticipants interact with the forms whose morphology changes with the movements of the participants. When no human participants are present, a neural network based agent that has learnt how to dance from a trained dancer, takes over and the forms follow the agent's movement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we apply a computational intelligence method for tunnelling settlement prediction. A supervised feed forward back propagation neural network is used to predict the surface settlement during twin-tunnelling while surface buildings are considered in the models. The performance of the statistical neural network structure is tested on a dataset provided by numerical parametric studies conducted by ABAQUS software based on Shiraz line 1 metro data. Six input variables are fed to neural network model for predicting the surface settlement. These include tunnel center depth, distance between centerlines of twin tunnels, buildings width and building bending stiffness, and building weight and distance to tunnel centerline. Simulation results indicate that the proposed NN models are able to accurately predict the surface settlement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an empirical analysis on transfer learning using the Fuzzy Min–Max (FMM) neural network with an online learning strategy. Three transfer learning benchmark data sets, i.e., 20 Newsgroups, WiFi Time, and Botswana, are used for evaluation. In addition, the data samples are corrupted with white Gaussian noise up to 50 %, in order to assess the robustness of the online FMM network in handling noisy transfer learning tasks. The results are analyzed and compared with those from other methods. The outcomes indicate that the online FMM network is effective for undertaking transfer learning tasks in noisy environments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical power systems are evolving from today's centralized bulk systems to more decentralized systems. Penetrations of renewable energies, such as wind and solar power, significantly increase the level of uncertainty in power systems. Accurate load forecasting becomes more complex, yet more important for management of power systems. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in system operations. To quantify potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for the construction of prediction intervals (PIs). A newly introduced method, called lower upper bound estimation (LUBE), is applied and extended to develop PIs using NN models. A new problem formulation is proposed, which translates the primary multiobjective problem into a constrained single-objective problem. Compared with the cost function, this new formulation is closer to the primary problem and has fewer parameters. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Electrical demands from Singapore and New South Wales (Australia), as well as wind power generation from Capital Wind Farm, are used to validate the PSO-based LUBE method. Comparative results show that the proposed method can construct higher quality PIs for load and wind power generation forecasts in a short time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Short-term load forecasting (STLF) is of great importance for control and scheduling of electrical power systems. The uncertainty of power systems increases due to the random nature of climate and the penetration of the renewable energies such as wind and solar power. Traditional methods for generating point forecasts of load demands cannot properly handle uncertainties in datasets. To quantify these potential uncertainties associated with forecasts, this paper implements a neural network (NN)-based method for construction of prediction intervals (PIs). A newly proposed method, called lower upper bound estimation (LUBE), is applied to develop PIs using NN models. The primary multi-objective problem is firstly transformed into a constrained single-objective problem. This new problem formulation is closer to the original problem and has fewer parameters than the cost function. Particle swarm optimization (PSO) integrated with the mutation operator is used to solve the problem. Two case studies from Singapore and New South Wales (Australia) historical load datasets are used to validate the PSO-based LUBE method. Demonstrated results show that the proposed method can construct high quality PIs for load forecasting applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the application of an improved particle swarm optimization (PSO) technique for training an artificial neural network (ANN) to predict water levels for the Heshui watershed, China. Daily values of rainfall and water levels from 1988 to 2000 were first analyzed using ANNs trained with the conjugate-gradient, gradient descent and Levenberg-Marquardt neural network (LM-NN) algorithms. The best results were obtained from LM-NN and these results were then compared with those from PSO-based ANNs, including conventional PSO neural network (CPSONN) and improved PSO neural network (IPSONN) with passive congregation. The IPSONN algorithm improves PSO convergence by using the selfish herd concept in swarm behavior. Our results show that the PSO-based ANNs performed better than LM-NN. For models run using a single parameter (rainfall) as input, the root mean square error (RMSE) of the testing dataset for IPSONN was the lowest (0.152 m) compared to those for CPSONN (0.161 m) and LM-NN (0.205 m). For multi-parameter (rainfall and water level) inputs, the RMSE of the testing dataset for IPSONN was also the lowest (0.089 m) compared to those for CPSONN (0.105 m) and LM-NN (0.145 m). The results also indicate that the LM-NN model performed poorly in predicting the low and peak water levels, in comparison to the PSO-based ANNs. Moreover, the IPSONN model was superior to CPSONN in predicting extreme water levels. Lastly, IPSONN had a quicker convergence rate compared to CPSONN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a comparative study of three algorithms for learning artificial neural network. As neural estimator, back-propagation (BP) algorithm, uncorrelated real time recurrent learning (URTRL) algorithm and correlated real time recurrent learning (CRTRL) algorithm are used in the present work to learn the artificial neural network (ANN). The approach proposed here is based on the flux estimation of high performance induction motor drives. Simulation of the drive system was carried out to study the performance of the motor drive. It is observed that the proposed CRTRL algorithm based methodology provides better performance than the BP and URTRL algorithm based technique. The proposed method can be used for accurate measurement of the rotor flux.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A useful patient admission prediction model that helps the emergency department of a hospital admit patients efficiently is of great importance. It not only improves the care quality provided by the emergency department but also reduces waiting time of patients. This paper proposes an automatic prediction method for patient admission based on a fuzzy min–max neural network (FMM) with rules extraction. The FMM neural network forms a set of hyperboxes by learning through data samples, and the learned knowledge is used for prediction. In addition to providing predictions, decision rules are extracted from the FMM hyperboxes to provide an explanation for each prediction. In order to simplify the structure of FMM and the decision rules, an optimization method that simultaneously maximizes prediction accuracy and minimizes the number of FMM hyperboxes is proposed. Specifically, a genetic algorithm is formulated to find the optimal configuration of the decision rules. The experimental results using a large data set consisting of 450740 real patient records reveal that the proposed method achieves comparable or even better prediction accuracy than state-of-the-art classifiers with the additional ability to extract a set of explanatory rules to justify its predictions.