111 resultados para Recurrent Neural Networks


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a neural network (NN)-based multi-agent classifier system (MACS) utilising the trust-negotiation-communication (TNC) reasoning model is proposed. A novel trust measurement method, based on the combination of Bayesian belief functions, is incorporated into the TNC model. The Fuzzy Min-Max (FMM) NN is used as learning agents in the MACS, and useful modifications of FMM are proposed so that it can be adopted for trust measurement. Besides, an auctioning procedure, based on the sealed bid method, is applied for the negotiation phase of the TNC model. Two benchmark data sets are used to evaluate the effectiveness of the proposed MACS. The results obtained compare favourably with those from a number of machine learning methods. The applicability of the proposed MACS to two industrial sensor data fusion and classification tasks is also demonstrated, with the implications analysed and discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Short Term Load Forecasting (STLF) is very important from the power systems grid operation point of view. STLF involves forecasting load demand in a short term time frame. The short term time frame may consist of half hourly prediction up to weekly prediction. Accurate forecasting would benefit the utility in terms of reliability and stability of the grid ensuring adequate supply is present to meet with the load demand. Apart from that it would also affect the financial performance of the utility company. An accurate forecast would result in better savings while maintaining the security of the grid. This paper outlines the STLF using a novel hybrid online learning neural network, known as the Gaussian Regression (GR). This new hybrid neural network is a combination of two existing online learning neural networks which are the Gaussian Adaptive Resonance Theory (GA) and the Generalized Regression Neural Network (GRNN). Both GA and GRNN implemented online learning, but each of them suffers from limitation. Originally GA is used for unsupervised clustering by compressing the training samples into several categories. A supervised version of GA is available, namely Gaussian ARTMAP (GAM). However, the GAM is still not capable on solving regression problem. On the other hand, GRNN is designed for solving real value estimation (regression) problem, but the learning process would involve of memorizing all training samples, hence high computational cost. The hybrid GR is considered an enhanced version of GRNN with compression ability while still maintains online learning properties. Simulation results show that GR has comparable prediction accuracy and has less prototype as compared to the original GRNN as well as the Support Vector Regression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Speaker recognition is the process of automatically recognizing the speaker by analyzing individual information contained in the speech waves. In this paper, we discuss the development of an intelligent system for text-dependent speaker recognition. The system comprises two main modules, a wavelet-based signal-processing module for feature extraction of speech waves, and an artificial-neural-network-based classifier module to identify and categorize the speakers. Wavelet is used in de-noising and in compressing the speech signals. The wavelet family that we used is the Daubechies Wavelets. After extracting the necessary features from the speech waves, the features were then fed to a neural-network-based classifier to identify the speakers. We have implemented the Fuzzy ARTMAP (FAM) network in the classifier module to categorize the de-noised and compressed signals. The proposed intelligent learning system has been applied to a case study of text-dependent speaker recognition problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Artificial neural networks have a good potential to be employed for fault diagnosis and condition monitoring problems in complex processes. In this paper, the applicability of the fuzzy ARTMAP (FAM) neural network as an intelligent learning system for fault detection and diagnosis in a power generation plant is described. The process under scrutiny is the circulating water (CW) system, with specific attention to the conditions of heat transfer and tube blockage in the CW system. A series of experiments has been conducted systematically to investigate the effectiveness of FAM in fault detection and diagnosis tasks. In addition, a set of domain rules has been extracted from the trained FAM network so that its predictions can be explained and justified. The outcomes demonstrate the benefits of employing FAM as an intelligent fault detection and diagnosis tool with an explanatory capability for monitoring and diagnosing complex processes in power generation plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, an empirical study of the development and application of a committee of neural networks on online pattern classification tasks is presented. A multiple classifier framework is designed by adopting an Adaptive Resonance Theory-based (ART) autonomously learning neural network as the building block. A number of algorithms for combining outputs from multiple neural classifiers are considered, and two benchmark data sets have been used to evaluate the applicability of the proposed system. Different learning strategies coupling offline and online learning approaches, as well as different input pattern representation schemes, including the "ensemble" and "modular" methods, have been examined experimentally. Benefits and shortcomings of each approach are systematically analyzed and discussed. The results are comparable, and in some cases superior, with those from other classification algorithms. The experiments demonstrate the potentials of the proposed multiple neural network systems in offering an alternative to handle online pattern classification tasks in possibly nonstationary environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, the application of multiple Elman neural networks to time series data regression problems is studied. An ensemble of Elman networks is formed by boosting to enhance the performance of the individual networks. A modified version of the AdaBoost algorithm is employed to integrate the predictions from multiple networks. Two benchmark time series data sets, i.e., the Sunspot and Box-Jenkins gas furnace problems, are used to assess the effectiveness of the proposed system. The simulation results reveal that an ensemble of boosted Elman networks can achieve a higher degree of generalization as well as performance than that of the individual networks. The results are compared with those from other learning systems, and implications of the performance are discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Creating a set of a number of neural network (NN) models in an ensemble and accumulating them can achieve better overview capability as compared to single neural network. Neural network ensembles are designed to provide solutions to particular problems. Many researchers and academicians have adopted this NN ensemble technique, especially in machine learning, and has been applied in various fields of engineering, medicine and information technology. This paper present a robust aggregation methodology for load demand forecasting based on Bayesian Model Averaging of a set of neural network models in an ensemble. This paper estimate a vector of coefficient for individual NN models' forecasts using validation data-set. These coefficients, also known as weights, are equal to posterior probabilities of the models generating the forecasts. These BMA weights are then used in combining forecasts generated from NN models with test data-set. By comparing the Bayesian results with the Simple Averaging method, it was observed that benefits are obtained by utilizing an advanced method like BMA for forecast combinations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Neural network (NN) is a popular artificial intelligence technique for solving complicated problems due to their inherent capabilities. However generalization in NN can be harmed by a number of factors including parameter's initialization, inappropriate network topology and setting parameters of the training process itself. Forecast combinations of NN models have the potential for improved generalization and lower training time. A weighted averaging based on Variance-Covariance method that assigns greater weight to the forecasts producing lower error, instead of equal weights is practiced in this paper. While implementing the method, combination of forecasts is done with all candidate models in one experiment and with the best selected models in another experiment. It is observed during the empirical analysis that forecasting accuracy is improved by combining the best individual NN models. Another finding of this study is that reducing the number of NN models increases the diversity and, hence, accuracy.