113 resultados para LIPID-BILAYERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Muscle fatty acid (FA) metabolism is impaired in obesity and insulin resistance, reflected by reduced rates of FA oxidation and accumulation of lipids. It has been suggested that interventions that increase FA oxidation may enhance insulin action by reducing these lipid pools. Here, we examined the effect of endurance training on rates of mitochondrial FA oxidation, the activity of carnitine palmitoyltransferase I (CPT I), and the lipid content in muscle of obese individuals and related these to measures of glucose tolerance. Nine obese subjects completed 8 wk of moderate-intensity endurance training, and muscle biopsies were obtained before and after training. Training significantly improved glucose tolerance, with a reduction in the area under the curve for glucose (P< 0.05) and insulin (P = 0.01) during an oral glucose tolerance test. CPT I activity increased 250% (P = 0.001) with training and became less sensitive to inhibition by malonyl-CoA. This was associated with an increase in mitochondrial FA oxidation (+120%, P < 0.001). Training had no effect on muscle triacylglycerol content; however, there was a trend for training to reduce both the total diacylglcyerol (DAG) content (−15%, P = 0.06) and the saturated DAG-FA species (−27%, P = 0.06). Training reduced both total ceramide content (−42%, P = 0.01) and the saturated ceramide species (−32%, P < 0.05). These findings suggest that the improved capacity for mitochondrial FA uptake and oxidation leads not only to a reduction in muscle lipid content but also a to change in the saturation status of lipids, which may, at least in part, provide a mechanism for the enhanced insulin action observed with endurance training in obese individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We determined whole-body insulin sensitivity, long-chain fatty acyl coenzyme A (LCACoA) content, skeletal muscle triglyceride (TGm) concentration, fatty acid transporter protein content, and oxidative enzyme activity in eight patients with type 2 diabetes (TYPE 2); six healthy control subjects matched for age (OLD), body mass index, percentage of body fat, and maximum pulmonary O2 uptake; nine well-trained athletes (TRAINED); and four age-matched controls (YOUNG). Muscle biopsies from the vastus lateralis were taken before and after a 2-h euglycemic-hyperinsulinemic clamp. Oxidative enzyme activities, fatty acid transporters (FAT/CD36 and FABPpm), and TGm were measured from basal muscle samples, and total LCACoA content was determined before and after insulin stimulation. Whole-body insulin-stimulated glucose uptake was lower in TYPE 2 (P < 0.05) than in OLD, YOUNG, and TRAINED. TGm was elevated in TYPE 2 compared with all other groups (P < 0.05). However, both basal and insulin-stimulated skeletal muscle LCACoA content were similar. Basal citrate synthase activity was higher in TRAINED (P < 0.01), whereas β-hydroxyacyl CoA dehydrogenase activity was higher in TRAINED compared with TYPE 2 and OLD. There was a significant relationship between the oxidative capacity of skeletal muscle and insulin sensitivity (citrate synthase, r = 0.71, P < 0.001; β-hydroxyacyl CoA dehydrogenase, r = 0.61, P = 0.001). No differences were found in FAT/CD36 protein content between groups. In contrast, FABPpm protein was lower in OLD compared with TYPE 2 and YOUNG (P < 0.05). In conclusion, despite markedly elevated skeletal muscle TGm in type 2 diabetic patients and strikingly different levels of whole-body glucose disposal, both basal and insulin-stimulated LCACoA content were similar across groups. Furthermore, skeletal muscle oxidative capacity was a better predictor of insulin sensitivity than either TGm concentration or long-chain fatty acyl CoA content.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superior characteristics of high photon flux and diffraction-limited spatial resolution achieved by synchrotron-FTIR microspectroscopy allowed molecular characterization of individual live thraustochytrids. Principal component analysis revealed distinct separation of the single live cell spectra into their corresponding strains, comprised of new Australasian thraustochytrids (AMCQS5-5 and S7) and standard cultures (AH-2 and S31). Unsupervised hierarchical cluster analysis (UHCA) indicated close similarities between S7 and AH-7 strains, with AMCQS5-5 being distinctly different. UHCA correlation conformed well to the fatty acid profiles, indicating the type of fatty acids as a critical factor in chemotaxonomic discrimination of these thraustochytrids and also revealing the distinctively high polyunsaturated fatty acid content as key identity of AMCQS5-5. Partial least squares discriminant analysis using cross-validation approach between two replicate datasets was demonstrated to be a powerful classification method leading to models of high robustness and 100% predictive accuracy for strain identification. The results emphasized the exceptional S-FTIR capability to perform real-time in vivo measurement of single live cells directly within their original medium, providing unique information on cell variability among the population of each isolate and evidence of spontaneous lipid peroxidation that could lead to deeper understanding of lipid production and oxidation in thraustochytrids for single-cell oil development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Defective control of lipid metabolism leading to lipotoxicity causes insulin resistance in skeletal muscle, a major factor leading to diabetes. Here, we demonstrate that perilipin (PLIN) 5 is required to couple intramyocellular triacylglycerol lipolysis with the metabolic demand for fatty acids. PLIN5 ablation depleted triacylglycerol stores but increased sphingolipids including ceramide, hydroxylceramides and sphingomyelin. We generated perilipin 5 (Plin5)-/- mice to determine the functional significance of PLIN5 in metabolic control and insulin action. Loss of PLIN5 had no effect on body weight, feeding or adiposity but increased whole-body carbohydrate oxidation. Plin5-/- mice developed skeletal muscle insulin resistance, which was associated with ceramide accumulation. Liver insulin sensitivity was improved in Plin5-/- mice, indicating tissue-specific effects of PLIN5 on insulin action. We conclude that PLIN5 plays a critical role in coordinating skeletal muscle triacylglycerol metabolism, which impacts sphingolipid metabolism, and is requisite for the maintenance of skeletal muscle insulin action. © 2014 The Authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell membrane changes its morphology during many physiological processes with the assistance of a solid support, such as the cytoskeleton, under an environmental stimulus. Here, a novel type of stimuli-responsive lipogel was fabricated, mimicking the changes of cell membrane. The lipogel was prepared from poly(N-isopropylacrylamide) (pNIPAM) microgel particle and phospholipid by a solvent-exchange method. The temperature dependent volume phase transition of pNIPAM triggers reversible transformation of the lipogel between a lipid vesicle-coated sun-like structure and a contracted hybrid sphere, through lipid merging and protrusion processes, respectively. By contrast, the salt induced pNIPAM phase transition leads to an irreversible vesicle release behaviour. The lipogel creates a unique platform for studying cell membrane behaviour and provides promising candidates in drug delivery and controlled release applications. © 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phthalocyanine (Pc) is a type of promising sensitizer molecules for photodynamic therapy (PDT), but its hydrophobicity substantially prevents its applications. In this study, we efficiently encapsulate Pc into poly(N-isopropylacrylamide) (pNIPAM) microgel particles, without or with lipid decoration (i.e., Pc@pNIPAM or Pc@pNIPAM/lipid), to improve its water solubility and prevent aggregation in aqueous medium. The incorporation of lipid molecules significantly enhances the Pc loading efficiency of pNIPAM. These Pc@pNIPAM and Pc@pNIPAM/lipid composite microspheres show thermo-triggered release of Pc and/or lipid due to the phase transition of pNIPAM. Furthermore, in the in vitro experiments, these composite particles work as drug carriers for the hydrophobic Pc to be internalized into HeLa cells. After internalization, the particles show efficient fluorescent imaging and PDT effect. Our work demonstrates promising candidates in promoting the use of hydrophobic drugs including photosensitizers in tumor therapies. © 2014 by the authors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) and retinoic acid (RA) signaling have been associated with influencing lipid metabolism. We hypothesized that modulation of these pathways could modify lipid abundance in developing vertebrates and that these pathways could have a combinatorial effect on lipid levels. Zebrafish embryos were exposed to chemical treatments altering the activity of the ECS and RA pathway. Embryos were stained with the neutral lipid dye Oil-Red-O (ORO) and underwent whole-mount in situ hybridization. Mouse 3T3-L1 fibroblasts were differentiated under exposure to RA modulating chemicals and subsequently stained with ORO and analyzed for gene expression by qRT-PCR. ECS activation and RA exposure increased lipid abundance and the expression of lipoprotein lipase. Additionally, RA treatment increased expression of CCAAT/enhancer binding protein alpha. Both ECS receptors and RA receptor subtypes were separately involved in modulating lipid abundance. Finally, increased ECS or RA activity ameliorated the reduced lipid abundance caused by peroxisome proliferator-activated receptor gamma (PPARγ) inhibition. Therefore, the ECS and RA pathway influence lipid abundance in zebrafish embryos and have an additive effect when treated simultaneously. Furthermore, we demonstrated that these pathways act downstream or independently of PPARγ to influence lipid levels. Our study shows for the first time that the RA and ECS pathways have additive function in lipid abundance during vertebrate development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Whether dietary indexes are associated with biomarkers of children's dietary intake is unclear. OBJECTIVE: The study aim was to examine the relations between diet quality and selected plasma biomarkers of dietary intake and serum lipid profile. METHODS: The study sample consisted of 130 children aged 4-13 y (mean ± SD: 8.6 ± 2.9 y) derived by using baseline data from an intervention study. The Dietary Guideline Index for Children and Adolescents (DGI-CA) comprises the following 11 components with age-specific criteria: 5 core food groups, whole-grain bread, reduced-fat dairy foods, discretionary foods (nutrient poor; high in saturated fat, salt, and added sugar), healthy fats/oils, water, and diet variety (possible score of 100). A higher score reflects greater compliance with dietary guidelines. Venous blood was collected for measurements of serum lipids, fatty acid composition, plasma carotenoids, lutein, lycopene, and α-tocopherol. Linear regression was used to examine the relation between DGI-CA score (independent variable) and concentrations of biomarkers by using the log-transformed variable (outcome), controlling for confounders. RESULTS: DGI-CA score was positively associated (P < 0.05) with plasma concentrations of lutein (standardized β = 0.17), α-carotene (standardized β = 0.28), β-carotene (standardized β = 0.26), and n-3 (ω-3) fatty acids (standardized β = 0.51) and inversely associated with plasma concentrations of lycopene (standardized β = -0.23) and stearic acid (18:0) (standardized β = -0.22). No association was observed between diet quality and α-tocopherol, n-6 fatty acids, or serum lipid profile (all P > 0.05). CONCLUSION: Diet quality, conceptualized as adherence to national dietary guidelines, is cross-sectionally associated with plasma biomarkers of dietary exposure but not serum lipid profile. This trial was registered with the Australia New Zealand Clinical Trial Registry (www.anztr.org.au) as ACTRN12609000453280.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative and nitrosative stress (O&NS) is causatively implicated in the pathogenesis of Alzheimer’s and Parkinson’s disease, multiple sclerosis, chronic fatigue syndrome, schizophrenia and depression. Many of the consequences stemming from O&NS, including damage to proteins, lipids and DNA, are well known, whereas the effects of O&NS on lipoprotein-based cellular signalling involving palmitoylation and plasma membrane lipid rafts are less well documented. The aim of this narrative review is to discuss the mechanisms involved in lipid-based signalling, including palmitoylation, membrane/lipid raft (MLR) and n-3 polyunsaturated fatty acid (PUFA) functions, the effects of O&NS processes on these processes and their role in the abovementioned diseases. S-palmitoylation is a post-translational modification, which regulates protein trafficking and association with the plasma membrane, protein subcellular location and functions. Palmitoylation and MRLs play a key role in neuronal functions, including glutamatergic neurotransmission, and immune-inflammatory responses. Palmitoylation, MLRs and n-3 PUFAs are vulnerable to the corruptive effects of O&NS. Chronic O&NS inhibits palmitoylation and causes profound changes in lipid membrane composition, e.g. n-3 PUFA depletion, increased membrane permeability and reduced fluidity, which together lead to disorders in intracellular signal transduction, receptor dysfunction and increased neurotoxicity. Disruption of lipid-based signalling is a source of the neuroimmune disorders involved in the pathophysiology of the abovementioned diseases. n-3 PUFA supplementation is a rational therapeutic approach targeting disruptions in lipid-based signalling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerated Bombyx mori (B. mori) silk fibroin is a type of widely used biomaterial. The β-sheet structure of it after methanol treatment provides water-insolubility and mechanical stability while on the other side leads to a hydrophobic surface which is less preferred by biological systems. In this work we prepare a novel type of nanoconfined silk fibroin film with a thickness below 100 nm. The film has a flat while hydrophobic surface because of its β-sheet structure due to the z-direction confinement during formation. Different types of lipid monolayers, DOPC, DPPC and MO, are assembled on the silk film surface. The lipid coating, especially the DPPC membrane, provides a much smoother and more hydrophilic surface due to the gel phase tails of the lipids, in comparison with the DOPC and MO ones which are in a liquid phase and have a much stronger interfacial association between silk film surface and lipid tails. Such a lipid coating preserves the biocompatibility and cellular affinity of the silk film which promises potential applications as surface coatings for materials for biological use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall HIV-1 membrane lipid contents resemble lipid rafts, and we have previously demonstrated that raft-promoting properties of virus-associated cholesterol (with modifications in either the 3β-OH group or AB rings) are important for HIV-1 infectivity. As cholesterol is present in both rafts and non-rafts domains of HIV-1 membrane, we question whether the interpretation of rafts property of virus-associated cholesterol being an absolute requirement for HIV-1 function is too simplistic. The carbon side chain of cholesterol is the third component of cholesterol that can affect the fluidity of membrane depending on its context within the lipid membrane bilayers. In this work, we have used synthetic cholesterol analogues that have different lengths of carbon side chain for our investigation. In contrast to our previous report, we have found that cholesterol side chain analogues that lack in vitro defined raft promoting-property is able to support HIV-1 replication. More specifically, cholesterol analogues with side chains of intermediate length have greater capacity to support HIV-1 infection, suggesting HIV-1 is able to maintain function using cholesterol variants that promote a range of non-rafts- to rafts-properties. Our data demonstrate cholesterol properties other than raft-promoting function also contribute to the infectivity of HIV-1.