133 resultados para haptic grasping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel technique to associate color RGB dimensions into other dimensions that can be explored Haptically. These dimensions will be the force, vibration and geometric representation. The color association between the color information and the other modalities will be called the Haptic-Color Palette. This is of great importance for visually impaired and color blind persons to get access to media in which colors play a great role, such as artwork. The proposed color conversion technique is based on the human perception and interpretations of colors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-cost haptic interface providing four different kinematic configurations. The different configurations are achieved using two Phantom Omni haptic devices combined with a series of clip-on attachments. Aside from the flexibility to easily reconfigure the interface, three of the four configurations provide functionality which is either not readily available or is cost prohibitive for many applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 CHAI3D is a widely accepted haptic SDK in the society because it is open-source and provides support to devices from different vendors. In many cases, CHAI3D and its related demos are used for benchmarking various haptic collision and rendering algorithms. However, CHAI3D is designed for off-the-shelf single-point haptic devices only, and it does not provide native support to customised multi-point haptic devices. In this paper, we aim to extend the existing CHAI3D framework and provide a standardized routine to support customised, single/multi-point haptic devices. Our extension aims at two issues: Intra-device communication and Inter-device communication. Therefore, our extension includes an HIP wrapper layer to concurrently handle multiple HIPs of a single device, and a communication layer to concurrently handle multiple position, orientation and force calculations of multiple haptic devices. Our extension runs on top of a custom-built 8-channel device controller, although other offthe shelf controllers can also be integrated easily. Our extension complies with the CHAI3D design framework and advanced provide inter-device communication capabilities for multi-device operations. With straightforward conversion routines, existing CHAI3D demos can be adapted to multi-point demos, supporting real-time parallel collision detection and force rendering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Haptic rendering of complex models is usually prohibitive due to its much higher update rate requirement compared to visual rendering. Previous works have tried to solve this issue by introducing local simulation or multi-rate simulation for the two pipelines. Although these works have improved the capacity of haptic rendering pipeline, they did not take into consideration the situation of heterogeneous objects in one scenario, where rigid objects and deformable objects coexist in one scenario and close to each other. In this paper, we propose a novel idea to support interactive visuo-haptic rendering of complex heterogeneous models. The idea incorporates different collision detection and response algorithms and have them seamlessly switched on and off on the fly, as the HIP travels in the scenario. The selection of rendered models is based on the hypothesis of “parallel universes”, where the transition of rendering one group of models to another is totally transparent to users. To facilitate this idea, we proposed a procedure to convert the traditional single universe scenario into a “multiverse” scenario, where the original models are grouped and split into each parallel universe, depending on the scenario rendering requirement rather than just locality. We also proposed to add simplified visual objects as background avatars in each parallel universe to visually maintain the original scenario while not overly increase the scenario complexity. We tested the proposed idea in a haptically-enabled needle thoracostomy training environment and the result demonstrates that our idea is able to substantially accelerate visuo-haptic rendering with complex heterogeneous scenario objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper details the further improvements obtained by redesigning a previously offered Manipulation Controller Framework to provide support to an innovative, friction-based object slippage detection strategy employed by the robotic object manipulator. This upgraded Manipulation Controller Framework includes improved slippage detection functionality and a streamlined architecture designed to improve controller robustness, reliability and speed. Improvements include enhancements to object slippage detection strategy, the removal of the decision making module and integration of its functionality into the Motion Planner, and the stream-lining of the Motion Planner to improve its effectiveness. It is anticipated that this work will be useful to researchers developing integrated robot controller architectures and slippage control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-robotic cell injection is typically performed manually by a trainedbio-operator, and success rates are often low. To enhance bio-operator performance during real-time cell injection, our earlier work introduced a haptically-enabled micro-robotic cell injection system. The system employed haptic virtual fixtures to provide haptic guidance according to articular performance metrics. This paper extends the work by replicating the system within a virtual reality (VR) environment for bio-operator training. Using the virtual environment, the bio-operator is able to control the virtual injection process in the same way they would with the physical haptic micro-robotic cell injection system, while benefiting from the enhanced visualisation capabilities offered by the 3D VR environment. The system is achieved using cost-effective components offering training at much lower cost than using the physical system.