224 resultados para fatty acid,


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary lipids and fatty acids are not only fundamental in determining animal performance, but also determine the eating qualities of animal products. Several methods have been used to quantify fatty acid metabolism but most involve expensive in vitro approaches that are not suitable for most laboratories. Furthermore, there is considerable variation between methods with regard to enzyme activity, which makes comparison of results between studies difficult. The recently developed whole-body fatty acid balance method (WBFABM) is a simple and reliable in vivo method for assessing fatty acid metabolism, including rates of liponeogenesis and de novo fatty acid production, β-oxidation of fatty acids and bioconversion (elongation and desaturation) of fatty acids to long-chain polyunsaturated fatty acids. Initially developed for implementation with a fish model, the WBFABM has proven to be a simple and effective method that can be used in any laboratory equipped with a gas chromatography unit. Since its development, it has been used in several farmed finfish feeding trials and in broiler chicken feeding trials. The WBFABM is currently used at research institutions worldwide and its use is increasing in popularity among animal scientists. With this method, it is possible to track the fate of individual dietary fatty acids within the body. The WBFABM could contribute significantly to information generated by animal feeding trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lipid content and fatty acid composition in the edible meat of twenty-nine species of wild and cultured freshwater and marine fish and shrimps were investigated. Both the lipid content and fatty acid composition of the species were specified due to their unique food habits and trophic levels. Most of the marine fish demonstrated higher lipid content than the freshwater fish, whereas shrimps had the lowest lipid content. All the marine fish and shrimps had much higher total n-3 PUFA than n-6 PUFA, while most of the freshwater fish and shrimps demonstrated much lower total n-3 PUFA than n-6 PUFA. This may be the biggest difference in fatty acid composition between marine and freshwater species. The cultured freshwater fish demonstrated higher percentages of total PUFA, total n-3 PUFA, and EPA + DHA than the wild freshwater fish. Two freshwater fish, including bighead carp and silver carp, are comparable to the marine fish as sources of n-3 PUFA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both basal metabolic rate (BMR) and maximum lifespan potential (MLSP) vary with body size in mammals and birds and it has been suggested that these are mediated through size-related variation in membrane fatty acid composition. Whereas the physical properties of membrane fatty acids affect the activity of membrane proteins and, indirectly, an animal's BMR, it is the susceptibility of those fatty acids to peroxidation which influence MLSP. Although there is a correlation between body size and MLSP, there is considerable MLSP variation independent of body size. For example, among bird families, Galliformes (fowl) are relatively short-living and Psittaciformes (parrots) are unusually long-living, with some parrot species reaching maximum lifespans of more than 100 years. We determined BMR and tissue phospholipid fatty acid composition in seven tissues from three species of parrots with an average MLSP of 27 years and from two species of quails with an average MLSP of 5. 5 years. We also characterised mitochondrial phospholipids in two of these tissues. Neither BMR nor membrane susceptibility to peroxidation corresponded with differences in MLSP among the birds we measured. We did find that (1) all birds had lower n-3 polyunsaturated fatty acid content in mitochondrial membranes compared to those of the corresponding tissue, and that (2) irrespective of reliance on flight for locomotion, both pectoral and leg muscle had an almost identical membrane fatty acid composition in all birds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to gain a better understanding of the metabolic fate of dietary fatty acids in rainbow trout, with a specific focus on the effect of varying total C18 PUFA level. Fish were fed a control fish oil based diet or one of five experimental fish oil deprived diets formulated with a constant 1/1 ratio of 18:3n-3/18:2n-6 and varying total C18 PUFA levels for a period of 7 weeks. The transcriptional changes of the Δ-6 desaturase and elongase enzymes in direct comparison to in vivo fatty acid bioconversion, estimated using the whole-body fatty acid balance method, were analysed. The main findings were that i) the efficiency of Δ-6 desaturase was negatively affected by C18 PUFA availability, but the total apparent in vivo enzyme activity was directly proportional to C18 PUFA substrate availability; ii) Δ-6 desaturase had a greater affinity towards n-3PUFA than n-6PUFA; iii) excessive C18 PUFA substrate availability could limit the availability of Δ-6 desaturase to act on C24 fatty acid; iv) the elimination of dietary n-3LC-PUFA (enzyme products) up-regulated the transcription rate of Δ-6 desaturase; but v) the total apparent in vivo enzyme activity was directly and positively affected by substrate availability, and not product presence/absence nor the extent of the enzyme transcription rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B6) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research describes a rapid method for the determination of fatty acid (FA) contents in a micro-encapsulated fish-oil (μEFO) supplement by using attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopic technique and partial least square regression (PLSR) analysis. Using the ATR-FTIR technique, the μEFO powder samples can be directly analysed without any pre-treatment required, and our developed PLSR strategic approach based on the acquired spectral data led to production of a good linear calibration with R2 = 0.99. In addition, the subsequent predictions acquired from an independent validation set for the target FA compositions (i.e., total oil, total omega-3 fatty acids, EPA and DHA) were highly accurate when compared to the actual values obtained from standard GC-based technique, with plots between predicted versus actual values resulting in excellent linear fitting (R2 ⩾ 0.96) in all cases. The study therefore demonstrated not only the substantial advantage of the ATR-FTIR technique in terms of rapidness and cost effectiveness, but also its potential application as a rapid, potentially automated, online monitoring technique for the routine analysis of FA composition in industrial processes when used together with the multivariate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Marine microbes are competent organisms, some of which can accumulate large amounts of lipids. A yeast strain, Rhodotorula mucilaginosa AMCQ8A was isolated from the marine water of the Queenscliff region, Victoria, Australia. The yeast isolate was identified by sequencing 18s rDNA genes. Scanning electron microscopy images revealed scars on the surface of the yeast cells. The Fourier transform infrared spectroscopy microspectroscopy studies demonstrated the presence of unsaturated fatty acids by differential microscopic analysis. The sharp band at 1745 cm-1 was represented by ν(C=O) stretches of ester functional groups from lipids and fats, and therefore indicated the presence of total lipids produced by the cells. Over 65% of the fatty acids from the yeast strain were analyzed as C16 and C18:1 with omega-3 content from about 6% to 7%. Thus, this marine-derived yeast could be a potential source of lipids, including omega-3 fatty acids. 2012, The Society for Biotechnology, Japan. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sesamin, a major sesame seed lignan, has diverse biological functions including the modulation of molecular actions in lipid metabolic pathways and reducing cholesterol levels. Vertebrates have different capacities to biosynthesize long-chain PUFA from dietary precursors and sesamin can enhance the biosynthesis of ALA to EPA and DHA in marine teleost. Early juvenile barramundi, Lates calcarifer, were fed for two weeks on diets rich in ALA or SDA derived from linseed or Echium plantagineum, respectively. Both diets contained phytosterols and less cholesterol compared with a standard fish oil-based diet. The growth rates were reduced in the animals receiving sesamin regardless of the dietary oil. However, the relative levels of n-3 LC-PUFA in total lipid, but not the phospholipid, increased in the whole body by up to 25% in animals fed on sesamin with ALA or SDA. Sesamin reduced the relative levels of triacylglycerols and increased polar lipid, and did not affect the relative composition of phospholipid subclasses or sterols. Sesamin is a potent modulator for LC-PUFA biosynthesis in animals, but probably will have more effective impact at advanced ages. By modulating certain lipid metabolic pathways, sesamin has probably disrupted the body growth and development of organs and tissues in early juvenile barramundi.