83 resultados para haptic augmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses a major challenge in datadriven haptic modeling of deformable objects. Data-driven modelling is done for specific objects and is difficult to generalize for nearly isometric objects that have similarities in semantics or topology. This limitation prevents the wide use of the data-driven modeling techniques when compared with parametric methods such as finite element methods. The proposed solution is to incorporate deformation transfer methods when processing similar instances. The contributions of this work are focused on the novel automatic shape correspondence method that overcomes the problems of symmetry and semantics presence requirement. The results shows that the proposed algorithm can efficiently calculate the correspondence and transfer deformations for a range of similar 3D objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite recent advances in artificial intelligence and autonomous robotics, teleoperation can provide distinct benefits in applications requiring real-time human judgement and intuition. However, as robotic systems are increasingly becoming sophisticated and are performing more complex tasks, realizing these benefits requires new approaches to teleoperation. This paper introduces a novel haptic mediator interface for teleoperating mobile robotic platforms that have a variety of manipulators and functions. Identical master-slave bilateral teleoperation of the robotic manipulators is achieved by representing them in virtual reality and by allowing the operator to interact with them using a multipoint haptic device. The operator is also able to command motions to the mobile platform by using a novel haptic interaction metaphor rather than a separate dedicated input device. The presented interaction techniques enable the operator to perform a wide range of control functions and achieve functionality similar to that of conventional teleoperation schemes that use a single haptic interface. The mediator interface is presented, and important considerations such as workspace mapping and scaling are discussed. © 2015 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel technique to associate color RGB dimensions into other dimensions that can be explored Haptically. These dimensions will be the force, vibration and geometric representation. The color association between the color information and the other modalities will be called the Haptic-Color Palette. This is of great importance for visually impaired and color blind persons to get access to media in which colors play a great role, such as artwork. The proposed color conversion technique is based on the human perception and interpretations of colors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-cost haptic interface providing four different kinematic configurations. The different configurations are achieved using two Phantom Omni haptic devices combined with a series of clip-on attachments. Aside from the flexibility to easily reconfigure the interface, three of the four configurations provide functionality which is either not readily available or is cost prohibitive for many applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence of the antidepressant efficacy of lamotrigine is increasing, although there are no placebo-controlled trials of lamotrigine augmentation in depression. The aim of this study was to assess if augmentation with lamotrigine was superior to placebo in patients who were receiving fluoxetine for resistant major depressive episodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 CHAI3D is a widely accepted haptic SDK in the society because it is open-source and provides support to devices from different vendors. In many cases, CHAI3D and its related demos are used for benchmarking various haptic collision and rendering algorithms. However, CHAI3D is designed for off-the-shelf single-point haptic devices only, and it does not provide native support to customised multi-point haptic devices. In this paper, we aim to extend the existing CHAI3D framework and provide a standardized routine to support customised, single/multi-point haptic devices. Our extension aims at two issues: Intra-device communication and Inter-device communication. Therefore, our extension includes an HIP wrapper layer to concurrently handle multiple HIPs of a single device, and a communication layer to concurrently handle multiple position, orientation and force calculations of multiple haptic devices. Our extension runs on top of a custom-built 8-channel device controller, although other offthe shelf controllers can also be integrated easily. Our extension complies with the CHAI3D design framework and advanced provide inter-device communication capabilities for multi-device operations. With straightforward conversion routines, existing CHAI3D demos can be adapted to multi-point demos, supporting real-time parallel collision detection and force rendering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Haptic rendering of complex models is usually prohibitive due to its much higher update rate requirement compared to visual rendering. Previous works have tried to solve this issue by introducing local simulation or multi-rate simulation for the two pipelines. Although these works have improved the capacity of haptic rendering pipeline, they did not take into consideration the situation of heterogeneous objects in one scenario, where rigid objects and deformable objects coexist in one scenario and close to each other. In this paper, we propose a novel idea to support interactive visuo-haptic rendering of complex heterogeneous models. The idea incorporates different collision detection and response algorithms and have them seamlessly switched on and off on the fly, as the HIP travels in the scenario. The selection of rendered models is based on the hypothesis of “parallel universes”, where the transition of rendering one group of models to another is totally transparent to users. To facilitate this idea, we proposed a procedure to convert the traditional single universe scenario into a “multiverse” scenario, where the original models are grouped and split into each parallel universe, depending on the scenario rendering requirement rather than just locality. We also proposed to add simplified visual objects as background avatars in each parallel universe to visually maintain the original scenario while not overly increase the scenario complexity. We tested the proposed idea in a haptically-enabled needle thoracostomy training environment and the result demonstrates that our idea is able to substantially accelerate visuo-haptic rendering with complex heterogeneous scenario objects.