101 resultados para haptic HRI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a low-cost haptic interface providing four different kinematic configurations. The different configurations are achieved using two Phantom Omni haptic devices combined with a series of clip-on attachments. Aside from the flexibility to easily reconfigure the interface, three of the four configurations provide functionality which is either not readily available or is cost prohibitive for many applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present invention provides remote interfacing utilising haptic technology. In a first aspect there is provided a haptic grasping interface comprising a plurality of finger interaction points, with actuators connected at one end to an actuator control mechanism. The mechanism is mounted remotely from the grasping interface, inverse to the finger interaction points, for manipulation of these points. The grasping points comprise pulleys which route the actuators through a cable tension and transmission system. A second aspect provides haptic augmentation to an operator, which indicates to the operator the state of a control input to a controlled device. A third aspect provides a means of simulating motion where haptic feedback is provided to a user in correspondence with the movement of the user within a pod environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present invention provides remote interfacing utilising haptic technology. In a first aspect there is provided a haptic grasping interface comprising a plurality of finger interaction points, with actuators connected at one end to an actuator control mechanism. The mechanism is mounted remotely from the grasping interface, inverse to the finger interaction points, for manipulation of these points. The grasping points comprise pulleys which route the actuators through a cable tension and transmission system. A second aspect provides haptic augmentation to an operator, which indicates to the operator the state of a control input to a controlled device. A third aspect provides a means of simulating motion where haptic feedback is provided to a user in correspondence with the movement of the user within a pod environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 CHAI3D is a widely accepted haptic SDK in the society because it is open-source and provides support to devices from different vendors. In many cases, CHAI3D and its related demos are used for benchmarking various haptic collision and rendering algorithms. However, CHAI3D is designed for off-the-shelf single-point haptic devices only, and it does not provide native support to customised multi-point haptic devices. In this paper, we aim to extend the existing CHAI3D framework and provide a standardized routine to support customised, single/multi-point haptic devices. Our extension aims at two issues: Intra-device communication and Inter-device communication. Therefore, our extension includes an HIP wrapper layer to concurrently handle multiple HIPs of a single device, and a communication layer to concurrently handle multiple position, orientation and force calculations of multiple haptic devices. Our extension runs on top of a custom-built 8-channel device controller, although other offthe shelf controllers can also be integrated easily. Our extension complies with the CHAI3D design framework and advanced provide inter-device communication capabilities for multi-device operations. With straightforward conversion routines, existing CHAI3D demos can be adapted to multi-point demos, supporting real-time parallel collision detection and force rendering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Haptic rendering of complex models is usually prohibitive due to its much higher update rate requirement compared to visual rendering. Previous works have tried to solve this issue by introducing local simulation or multi-rate simulation for the two pipelines. Although these works have improved the capacity of haptic rendering pipeline, they did not take into consideration the situation of heterogeneous objects in one scenario, where rigid objects and deformable objects coexist in one scenario and close to each other. In this paper, we propose a novel idea to support interactive visuo-haptic rendering of complex heterogeneous models. The idea incorporates different collision detection and response algorithms and have them seamlessly switched on and off on the fly, as the HIP travels in the scenario. The selection of rendered models is based on the hypothesis of “parallel universes”, where the transition of rendering one group of models to another is totally transparent to users. To facilitate this idea, we proposed a procedure to convert the traditional single universe scenario into a “multiverse” scenario, where the original models are grouped and split into each parallel universe, depending on the scenario rendering requirement rather than just locality. We also proposed to add simplified visual objects as background avatars in each parallel universe to visually maintain the original scenario while not overly increase the scenario complexity. We tested the proposed idea in a haptically-enabled needle thoracostomy training environment and the result demonstrates that our idea is able to substantially accelerate visuo-haptic rendering with complex heterogeneous scenario objects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ability to perform accurate micromanipulation offers wide-reaching benefits and is of increasing interest to researchers. Recent research into microgripper, microtweezer, and microforcep systems contributes toward accurate micrograsping and manipulation. Despite these efforts, achieving adequate operator control remains a distinct research challenge. Haptic interfaces interact with the human's haptic modality and offer the ability to enhance the operator's controllability of micromanipulation systems. Our previous work introduced single-point haptic guidance to assist the operator during intracellular microinjection. This paper extends the approach to propose multipoint haptic guidance for micrograsping tasks. Accurate micrograsping is valuable in many applications, including microassembly and biomanipulation. A multipoint haptic gripper facilitates haptic interaction, and haptic guidance assists the operator in controlling systems suitable for micrograsping. Force fields are used to guide the operator to suitable grasp points on micrometer-sized objects and consist of attractive and repulsive forces. The ability of the force field to effectively assist the operator in grasping the cell is evaluated using a virtual environment. Evaluation results demonstrate the ability of the approach to significantly reduce participants' average grasping error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micro-robotic cell injection is typically performed manually by a trainedbio-operator, and success rates are often low. To enhance bio-operator performance during real-time cell injection, our earlier work introduced a haptically-enabled micro-robotic cell injection system. The system employed haptic virtual fixtures to provide haptic guidance according to articular performance metrics. This paper extends the work by replicating the system within a virtual reality (VR) environment for bio-operator training. Using the virtual environment, the bio-operator is able to control the virtual injection process in the same way they would with the physical haptic micro-robotic cell injection system, while benefiting from the enhanced visualisation capabilities offered by the 3D VR environment. The system is achieved using cost-effective components offering training at much lower cost than using the physical system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, the micro-robotic cell injection procedure is performed manually by expert human bio-operators. In order to be proficient at the task, lengthy and expensive dedicated training is required. As such, effective specialized training systems for this procedure can prove highly beneficial. This paper presents a comprehensive review of haptic technology relevant to cell injection training and discusses the feasibility of developing such training systems, providing researchers with an inclusive resource enabling the application of the presented approaches, or extension and advancement of the work. A brief explanation of cell injection and the challenges associated with the procedure are first presented. Important skills, such as accuracy, trajectory, speed and applied force, which need to be mastered by the bio-operator in order to achieve successful injection, are then discussed. Then an overview of various types of haptic feedback, devices and approaches is presented. This is followed by discussion on the approaches to cell modeling. Discussion of the application of haptics to skills training across various fields and haptically-enabled virtual training systems evaluation are then presented. Finally, given the findings of the review, this paper concludes that a haptically-enabled virtual cell injection training system is feasible and recommendations are made to developers of such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ust-Noticeable-Differences (JND) as a dead-band in perceptual analysis has been widely used for more than a decade. This technique has been employed for data reduction in hap tic data transmission systems by several researchers. In fact, researchers use two different JND coefficients that are JNDV and JNDF for velocity and force data respectively. For position data, they usually rely on the resolution of hap tic display device to omit data that are unperceivable to human. In this paper, pruning undesirable position data that are produced by the vibration of the device or subject and/or noise in transmission line is addressed. It is shown that using inverse JNDV for position data can prune undesirable position data. Comparison of the results of the proposed method in this paper with several well known filters and some available methods proposed by other researchers is performed. It is shown that combination of JNDV could provide lower error with desirable curve smoothness, and as little as possible computation effort and complexity. It also has been shown that this method reduces much more data rather than using forward-JNDV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Improvised Explosive Devices (IEDs) are reported as the number one cause of injury and death for allied troops in the current theater of operation. Current stand-off technologies for Counter IED (CIED) tasks rely on robotic platforms that have not improved in capability over the past decade to combat the ever increasing threat of IEDs. While they provide operational capability, the effectiveness of these platforms is limited. This is because they primarily utilise video and audio feedback, and require extensive training and specialist operators. Recent operational experience has demonstrated the need for robotic systems that are highly capable, yet easily operable for high fidelity manipulation. Force feedback provides an operator with more intuitive control of a robotic system. This sense of touch allows an operator to obtain a sense of feel from a stand-off location of what the robot touches or grasps through a human-robot interface. This paper reports the design and development of a Haptically-Enabled Counter IED robotic system that was funded by the Australian Defence Force. The presented work focuses on the design methodology for the system, and provides the results of the manipulator analysis and trial outcomes.