68 resultados para aluminum tube


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results of experiments conducted in a 2m high flume at large Reynolds numbers are reported in this paper. The flume was partitioned into two compartments. Flow entered the bottom of the upstream test compartment as a wall jet, at jet Reynolds number ranging from 11,000 to 170,000. Periodic oscillations of the free surface in the two compartments resembling the oscillatory flow in a liquid-filled U-tube, and large coherent structures formed above the potential core of the wall jet were observed. Coupling of the U-tube oscillations and vortex shedding is attributed to fluid-dynamic and fluid-resonant feedback processes. For test compartment length, Lc=0.8m , fluid-resonant feedback was found to be dominant, and the shear layer was observed to oscillate at the natural frequency of the two-compartment, U-tube system. The observed U-tube oscillations are initiated by the oscillations of the shear layer at a frequency equal to the subharmonic component for the U-tube. The flow oscillations were generally weaker for Lc=1.2 and 2.0m with oscillation frequencies governed by fluid-dynamic feedback, verified from a comparison with the results from a previously reported study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new stable aluminum aminoterephthalate system contains octameric building blocks that are connected by organic linkers to form a 12-connected net (see picture). The structure adopts a cubic centered packing motive in which octameric units replace individual atoms, thus forming distorted octahedral (red sphere) and tetrahedral cages (green spheres) with effective accessible diameters of 1 and 0.45 nm, respectively

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atom probe tomography (APT) has been used to investigate the surface and sub-surface microstructures of aluminum alloy 2024 (AA2024) in the T3 condition (solution heat treated, cold worked, and naturally aged to a substantially stable condition). This study revealed surface Cu enrichment on the alloy matrix, local chemical structure around a dispersoid Al20Mn3Cu2 particle including a Cu-rich particle and S-phase particle on its external surface. Moreover, there was a significant level of hydrogen within the dispersoid, indicating that it is a hydrogen sink. These observations of the nanoscale structure around the dispersoid particle have considerable implications for understanding both corrosion and hydrogen embrittlement in high-strength aluminum alloys.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Yield function has various material parameters that describe how materials respond plastically in given conditions. However, a significant number of mechanical tests are required to identify the many material parameters for yield function. In this study, an effective method using crystal plasticity through a virtual experiment is introduced to develop the anisotropic yield function for AA5042. The crystal plasticity approach was used to predict the anisotropic response of the material in order to consider a number of stress or strain modes that would not otherwise be evident through mechanical testing. A rate-independent crystal plasticity model based on a smooth single crystal yield surface, which removes the innate ambiguity problem within the rate-independent model and Taylor model for polycrystalline deformation behavior were employed to predict the material’s response in the balanced biaxial stress, pure shear, and plane strain states to identify the parameters for the anisotropic yield function of AA5042.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this article is to investigate the drilling of carbon fiber-reinforced plastic (CFRP) composite/metal stack-ups to have a details picture of the developments in this complex area. The forces and torque, chip shape, surface finish and geometry, and tool material and tool wear for drilling composite/metal stack-ups have been analyzed in details in addition to drilling mechanism of CFRP. The relation between input and output parameters was discussed and the trend of input parameters for damage free and tight tolerance holes has been investigated based on the literature. The main findings are (i) heat, built-up edge and chips generated from drilling of metallic layers damages CFRP surface, (ii) order of material layers affects the drilling outcomes significantly, (iii) coatings and step-shape on the cutting tool improves the tool performance, (iv) tool materials should be selected based on the material of metallic layer, (v) chipping, adhesion, abrasion and attrition are main tool wear mechanisms during machining of CFRP/metal stacks and (vi) application of coolant improves the machinability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to describe paediatric feeding-tube weaning practice in Australian children's hospitals and to compare this with practice in tube weaning programmes internationally.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anisotropic mechanical behavior is investigated for an aluminum alloy of 6K21-IH T4 both in plastic deformation and ductile fracture. Anisotropic plastic deformation is characterized by uniaxial tensile tests of dog-bone specimens, while anisotropy in ductile fracture is illustrated with specimens with a central hole, notched specimens and shear specimens. All these specimens are cut off at every 15º from the rolling direction. The r-values and uniaxial tensile yield stresses are measured from the tensile tests of dog-bone specimens. Then the anisotropic plasticity is modeled by a newly proposed J2-J3 criterion under non-associate flow rule (non-AFR). The testing processes of specimens for ductile fracture analysis are simulated to extract the maximum plastic strain at fracture strokes as well as the evolution of the stress triaxiality and the Lode parameter in different testing directions. The measured fracture behavior is described by a shear-controlled ductile fracture criterion proposed by Lou et al. (2014. Modeling of shear ductile fracture considering a changeable cut-off value for stress triaxiality. Int. J. Plasticity 54, 56-80) for different loading directions. It is demonstrated that the anisotropic plastic deformation is described by the J2-J3 criterion with high accuracy in various loading conditions including shear, uniaxial tension and plane strain tension. Moreover, the anisotropy in ductile fracture is not negligible and cannot be modeled by isotropic ductile fracture criteria. Thus, an anisotropic model must be proposed to accurately illustrate the directionality in ductile fracture.