143 resultados para Viêt-nam


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reduced glucose utilization is likely to precede the onset of cognitive deficits in Alzheimer's disease (AD). Similar aberrant glucose metabolism can also be detected in the brain of several AD mouse models. Although the cause of this metabolic defect is not well understood, it could be related to impaired insulin signaling that is increasingly being reported in AD brain. However, the temporal relationship between insulin impairment and amyloid-β (Aβ) biogenesis is unclear. In this study using female AβPPsw/PS1ΔE9 mice, we found that the level of Aβ40 was fairly constant in 6- to 15-month-old brains, whereas Aβ42 was only significantly increased in the 15-month-old brain. In contrast, increased levels of IRβ, IGF-1R, IRS1, and IRS-2, along with reduced glucose and insulin content, were detected earlier in the 12-month-old brains of AβPPsw/PS1ΔE9 mice. The reduction in brain glucose content was accompanied by increased GLUT3 and GLUT4 levels. Importantly, these changes precede the significant upregulation of Aβ42 level in the 15-month-old brain. Interestingly, reduction in the p85 subunit of PI3K was only apparent in the 15-month-old AβPPsw/PS1ΔE9 mouse brain. Furthermore, the expression profile of IRβ, IRS-2, and p85/PI3K in AβPPsw/PS1ΔE9 was distinct in wild-type mice of a similar age. Although the exact mechanisms underlining this connection remain unclear, our results suggest a possible early role for insulin signaling impairment leading to amyloid accumulation in AβPPsw/PS1ΔE9 mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effect of rf-power in the range from 100 to 200 W on the electrochemical properties of TiN coatings deposited on 316L stainless steel was investigated by using various electrochemical techniques in a 3.5-wt\% NaCl solution. Surface analyses were also conducted to analyze the coating characteristics. X-ray diffraction (XRD) and atomic force microscopy (AFM) analyses confirmed that increasing the rf-power led to a preferred orientation of the TiN(200) microstructure and decreased the surface roughness. The potentiodynamic test results confirmed the passive behavior of all of the specimens with low passive current densities and demonstrated that the effective pitting resistance of the TiN coatings increased with increasing rf-power. The electrochemical impedance spectroscopy (EIS) tests showed that the TiN films deposited with high rf-power had excellent corrosion resistance during an immersion time of 720 h due to their high total resistance and low porosity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Corrosion properties of three different Sn-Ag lead free solder alloys have been investigated in 0.3 wt% Na2SO4 solution as corrosive environment. As cast solder alloy was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Volume fractions of the Ag3Sn in the solders were determined by image analysis technique. Pitting potential and corrosion potential for the alloys were determined by potentiodynamic tests. Electrochemical impedance spectroscopy (EIS) was carried out to measure the film and charge transfer resistance. Alloys with lower Ag content have been found as better corrosion resistance material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aqueous corrosion behavior of low-alloy steel with aluminum contents was examined in a 10 wt% H2SO4 (pH 0.13) solution using electrochemical techniques and surface analyses. The corrosion resistance of the new alloy steel was evaluated in terms of electrochemical parameters, such as passive current density, film, and charge transfer resistances. The results showed that a high Al content in the steel imparted better passivation behavior resulting in a lower corrosion rate. It related to the enrichment of iron carbonate and hydrocarbon by the dissolution of the carbide phase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Three types of methylcyclohexane (MCH) coating were deposited as interlayer dielectrics on copper using plasma-enhanced chemical vapor deposition (PECVD) at three different RF plasma power levels. The coating performance was then evaluated by an electrochemical im pedance spectroscopy (EIS) and a potentiodynamic polarization test in 3.5 wt.% NaCl solution. An atomic force microscopy (AFM) and Fourier transform infrared reflection (FT-IR) spectroscopy were also conducted to analyze the coatings. The MCH coatings showed a lower corrosion rate than the copper substrate in the potentiodynamic tests. The EIS results showed that the corrosion resistance of the coatings increased with an increasing plasma power. Thus, the MCH films with an increasing plasma power improved the corrosion resistance due to the formation of a low-porosity coating, the enhanced formation of C−H, C−C, and C≡C stretching configurations, and the improved smooth surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examined the influence of triethyl and tributyl phosphite (TEP and TBP) additives on the electrochemical performance of lithium-ion cells. The cell performance of the TEP- and TBP-containing electrolytes was evaluated by cyclic voltammetry, thermogravimetric analysis, electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy. The flammability of the electrolytes was also investigated by measuring the self-extinguishing time of the electrolytes. The results showed that the TEP and TBP additives suppressed the flammability of the electrolyte, with a significant improvement in cell performance observed for the TEP additive. In addition, TEP and TBP additives improved the thermal stability of the battery and its electrochemical cell performance. Overall, 5 wt% TEP and TBP can be used as a flame-retarding additive to improve the cell performance of Li-ion batteries due to the decrease in cell impedance and SEI formation.