121 resultados para Milk-clotting enzyme


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of milk in providing nutrition for the young is well established. However, it is becoming apparent that milk has a more comprehensive role in programming and regulating growth and development of the suckled young, and an autocrine impact on the mammary gland so that it functions appropriately during the lactation cycle. This central role of milk is best studied in animal models, such as marsupials that have evolved a different lactation strategy to eutherians and allow researchers to more easily identify regulatory mechanisms that are not as readily apparent in eutherian species. For example, the tammar wallaby (Macropus eugenii) has evolved with a unique reproductive strategy of a short gestation, birth of an altricial young and a relatively long lactation during which the mother progressively changes the composition of the major, and many of the minor components of milk. Thus, in contrast to eutherians, there is a far greater investment in development of the young during lactation and it is likely that many of the signals that regulate development of eutherian embryos in utero are delivered by the milk. This requires the co-ordinated development and function of the mammary gland. Inappropriate timing of these signalling events in mammals may result in either limited or abnormal development of the young, and potentially a higher incidence of mature onset disease. The tammar is emerging as an attractive model to better understand the role of milk factors in these processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Murine milk protein gene expression requires insulin, hydrocortisone, and prolactin; however, the role of insulin is not well understood. This study, therefore, examined the requirement of insulin for milk protein synthesis. Mammary explants were cultured in various combinations of the lactogenic hormones and global changes in gene expression analysed using Affymetrix microarray. The expression of 164 genes was responsive to insulin, and 18 were involved in protein synthesis at the level of transcription and posttranscription, as well as amino acid uptake and metabolism. The folate receptor gene was increased by fivefold, highlighting a potentially important role for the hormone in folate metabolism, a process that is emerging to be central for protein synthesis. Interestingly, gene expression of two milk protein transcription factors, Stat5a and Elf5, previously identified as key components of prolactin signalling, both showed an essential requirement for insulin. Subsequent experiments in HCll cells confirmed that Stat5a and Elf5 gene expression could be induced in the absence of prolactin but in the presence of insulin. Whereas prolactin plays an essential role in phosphorylating and activating Stat5a, gene expression is only induced when insulin is present. This indicates insulin plays a crucial role in the transcription of the milk protein genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To identify consumer attitudes and beliefs about (liquid) milk that may be barriers to consumption.

Design:
Two random-quota telephone surveys conducted in Auckland one year apart. Respondents were questioned about their usual milk intake and their attitudes to milk. The questionnaire included attitude items that reflected the main themes of consumer interest in milk.

Setting: New Zealand.

Subjects: Seven hundred and thirteen respondents in the baseline survey and a separate sample of 719 respondents in the follow-up survey.

Results:
At least one-third of the respondents consumed less than a glass (250ml) of milk a day. Non-consumption was highest in young women (15%). People's concerns about milk related to what was important in their lives; what threatens them physically and emotionally. Women held more positive attitudes but they were concerned about the fat content of milk. Men were less aware of milk's nutritional benefits and as a result were less appreciative of its value.

Conclusions:
There is an opportunity to develop public health initiatives to address the barriers to drinking milk. Industry–health alliances may be an effective means to provide positive nutrition messages about milk and to engage the support of health professionals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Limited data have suggested that the consumption of fluid milk after resistance training (RT) may promote skeletal muscle hypertrophy. The aim of this study was to assess whether a milk-based nutritional supplement could enhance the effects of RT on muscle mass, size, strength, and function in middle-aged and older men. This was an 18-mo factorial design (randomized control trial) in which 180 healthy men aged 50–79 yr were allocated to the following groups: 1) exercise + fortified milk, 2) exercise, 3) fortified milk, or 4) control. Exercise consisted of progressive RT with weight-bearing impact exercise. Men assigned to the fortified milk consumed 400 ml/day of low-fat milk, providing an additional 836 kJ, 1000 mg calcium, 800 IU vitamin D3, and 13.2 g protein per day. Total body lean mass (LM) and fat mass (FM) (dual-energy X-ray absorptiometry), midfemur muscle cross-sectional area (CSA) (quantitative computed tomography), muscle strength, and physical function were assessed. After 18 mo, there was no significant exercise by fortified milk interaction for total body LM, muscle CSA, or any functional measure. However, main effect analyses revealed that exercise significantly improved muscle strength (∼20–52%, P < 0.001), LM (0.6 kg, P < 0.05), FM (−1.1 kg, P < 0.001), muscle CSA (1.8%, P < 0.001), and gait speed (11%, P < 0.05) relative to no exercise. There were no effects of the fortified milk on muscle size, strength, or function. In conclusion, the daily consumption of low-fat fortified milk does not enhance the effects of RT on skeletal muscle size, strength, or function in healthy middle-aged and older men with adequate energy and nutrient intakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fabrication of enzyme electrodes using self-assembled monolayers (SAMs) has attracted considerable interest because of the spatial control over the enzyme immobilization. A model system of glucose oxidase covalently bound to a gold electrode modified with a SAM of 3-mercaptopropionic acid was investigated with regard to the effect of fabrication variables such as the surface topography of the underlying gold electrode, the conditions during covalent attachment of the enzyme and the buffer used. The resultant monolayer enzyme electrodes have excellent sensitivity and dynamic range which can easily be adjusted by controlling the amount of enzyme immobilized. The major drawback of such electrodes is the response which is limited by the kinetics of the enzyme rather than mass transport of substrates. Approaches to bringing such enzyme electrodes into the mass transport limiting regime by exploiting direct electron transfer between the enzyme and the electrode are outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high sensitivity that can be attained using a bienzymatic system and mediated by the redox polymer [Os(bpy)2ClPyCH2NHpoly(allylamine)] (Os-PAA), has been verified by on-line interfacing of a rotating bioreactor and continuous-flow/stopped-flow/continuous-flow processing. When the hydrogen peroxide formed by LOx layer reaches the inner layer, the electronic flow between the immobilized peroxidase and the electrode surface produces a current, proportional to lactate concentration. The determination of lactate was possible with a limit of detection of 5 nmol l−1 in the processing of as many as 30 samples per hour. This arrangement allows working in undiluted milk samples with a good stability and reproducibility. Horseradish peroxidase [EC 1.11.1.7] and Os-PAA were covalently immobilized on the glassy carbon electrode surface (upper cell body), lactate oxidase [EC 1.1.3.x] was immobilized on a disk that can be rotated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose oxidase (GOx) is an important enzyme with great potential application for enzymatic sensing of glucose, in implantable biofuel cells for powering of medical devices in vivo and for large-scale biofuel cells for distributed energy generation. For these applications, immobilisation of GOx and direct transfer of electrons from the enzyme to an electrode material is required. This paper describes synthesis of conducting polymer (CP) structures in which GOx has been entrained such that direct electron transfer is possible between GOx and the CP. CP/enzyme composites prepared by other means show no evidence of such “wiring”. These materials therefore show promise for mediator-less electronic connection of GOx into easily produced electrodes for biosensing or biofuel cell applications.