134 resultados para Lithium-chloride


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A polyterthiophene (PTTh)/multi-walled carbon nanotube (CNT) composite was synthesised by in situ chemical polymerisation and used as an active cathode material in lithium cells assembled with an ionic liquid (IL) or conventional liquid electrolyte, LiBF4/EC–DMC–DEC. The IL electrolyte consisted of 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) containing LiBF4 and a small amount of vinylene carbonate (VC). The lithium cells were characterised by cyclic voltammetry (CV) and galvanostatic charge/discharge cycling. The specific capacity of the cells with IL and conventional liquid electrolytes after the 1st cycle was 50 and 47 mAh g−1 (based on PTTh weight), respectively at the C/5 rate. The capacity retention after the 100th cycle was 78% and 53%, respectively. The lithium cell assembled with a PTTh/CNT composite cathode and a non-flammable IL electrolyte exhibited a mean discharge voltage of 3.8 V vs Li+/Li and is a promising candidate for high-voltage power sources with enhanced safety.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminium, as the current collector in lithium batteries, has shown reduced corrosion susceptibility in room temperature molten salts (1, 2). Moreover, previous studies have established that corrosion mitigation is achieved on magnesium alloys using ionic liquids pretreatments (3, 4). This paper investigated the anodisation of AA5083 aluminium alloy in Trihexyl(tetradecyl)phosphonium bis(trifluoromethylsulfony) ([P6,6,6,14][NTf2]) ionic liquid by applying a constant current followed by holding at the maximum potential for a period of time. Potentiodynamic polarisation results show that the treated surfaces were more corrosion resistant in 0.1 M sodium chloride solution compared with the control specimen. The anodising treatment was effective both in shifting the free corrosion potential to more noble values and in suppressing the corrosion current. Optical microscope and optical profilometry images indicated that an anodising film was deposited onto the alloy surface, which is thought to have inhibited corrosion in chloride environment. Further characterisation of the anodising film will be carried out in future work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study we expand our analysis of using two contrasting organic solvent additives (toluene and THF) in an ionic liquid (IL)/Li NTf 2 electrolyte. Multinuclear Pulsed-Field Gradient (PFG) NMR, spin-lattice (T1) relaxation times and conductivity measurements over a wide temperature range are discussed in terms of transport properties and structuring of the liquid. The conductivity of both additive samples is enhanced the most at low temperatures, with THF slightly more effective than toluene. Both the anion and lithium self-diffusivity are enhanced in the same order by the additives (THF > toluene) while that of the pyrrolidinium cation is marginally enhanced. 1H spin-lattice relaxation times indicate a reasonable degree of structuring and anisotropic motion within all of the samples and both 19F and 7Li highlight the effectiveness of THF at influencing the lithium coordination within these systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need to monitor biogenic amines levels is essential for many areas of the food industry for two main reasons: the caustic nature and potential toxicity of these amines, and the potential to use amine levels as markers for freshness and quality in foodstuffs. Optimised analysis conditions used for the determination of biogenic amines derivatised with 2-napthyloxycarbonyl chloride has been applied to different pet food samples to assess the effectiveness of this method for complex sample matrices. Further to this, the use of high-resolution mass spectrometry has enabled the previously unconfirmed derivatised form of seven biogenic amines to be established. The derivatised forms identified include as mono substituted (tryptamine and histamine), bisubstituted (putrescine, cadaverine and tyramine), trisubstituted (spermidine) and tetrasubstituted (spermine). The methodology of biogenic amine determination was performed successfully to a range of pet food products highlighting the applicability to a variety of complex sample matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurocognitive impairment is being increasingly recognized as an important issue in patients with cancer who develop cognitive difficulties either as part of direct or indirect involvement of the nervous system or as a consequence of either chemotherapy-related or radiotherapy-related complications. Brain radiotherapy in particular can lead to significant cognitive defects. Neurocognitive decline adversely affects quality of life, meaningful employment, and even simple daily activities. Neuroprotection may be a viable and realistic goal in preventing neurocognitive sequelae in these patients, especially in the setting of cranial irradiation. Lithium is an agent that has been in use for psychiatric disorders for decades, but recently there has been emerging evidence that it can have a neuroprotective effect.

This review discusses neurocognitive impairment in patients with cancer and the potential for investigating the use of lithium as a neuroprotectant in such patients.