76 resultados para Hydrogen bonding.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adsorption of target molecules on the immobilized microcantilever surface produced beam displacement due to the differential surface stress generated between the immobilized and non-immobilized surface. Surface stress is caused by the intermolecular forces between the molecules. Van der Waals, electrostatic forces, hydrogen bonding, hydrophobic effect and steric hindrance are some of the intermolecular forces involved. A theoretical framework describing the adsorption-induced microcantilever displacement is derived in this paper. Experimental displacement of thrombin aptamer-thrombin interactions was carried out. The relation between the electrostatic interactions involved between adsorbates (thrombin) as well as adsorbates and substrates (thrombin aptamer) and the microcantilever beam displacement utilizing the proposed mathematical model was quantified and compared to the experimental value. This exercise is important to aid the designers in microcantilever sensing performance optimization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interfacial interaction of composites dominates the properties of polymeric/inorganic nanocomposites. Herein, epoxy and hydroxyl groups are introduced into the natural rubber (NR) molecular chains to anchor oxygenous functional groups on the surface of graphene oxide (GO) sheets and therefore enhance the interfacial interaction between GO and rubber. From the morphological observation and interaction analysis, it is found that epoxidized natural rubber (ENR) latex particles are assembled onto the surfaces of GO sheets by employing hydrogen bonding interaction as driving force. This self-assembly depresses restacking and agglomeration of GO sheets and leads to homogenous dispersion of GO within ENR matrix. The formation of hydrogen bonding interface between ENR and GO demonstrates a significant reinforcement for the ENR host. Compared with those of pure ENR, the composite with 0.7 wt% GO loading receives 87% increase in tensile strength and 8.7 fold increase in modulus at 200% elongation after static in-situ vulcanization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adsorption of small biomolecules onto the surface of nanoparticles offers a novel route to generation of nanoparticle assemblies with predictable architectures. Previously, ligand-exchange experiments on citrate-capped gold nanoparticles with the amino acid arginine were reported to support linear nanoparticle assemblies. Here, we use a combination of atomistic modeling with experimental characterization to explore aspects of the assembly hypothesis for these systems. Using molecular simulation, we probe the structural and energetic characteristics of arginine overlayers on the Au(111) surface under aqueous conditions at both low- and high-coverage regimes. In the low-density regime, the arginines lie flat on the surface. At constant composition, these overlayers are found to be lower in energy than the densely packed films, although the latter case appears kinetically stable when arginine is adsorbed via the zwitterion group, exposing the charged guanidinium group to the solvent. Our findings suggest that zwitterion-zwitterion hydrogen bonding at the gold surface and minimization of the electrostatic repulsion between adjacent guanidinium groups play key roles in determining arginine overlayer stability at the aqueous gold interface. Ligand-exchange experiments of citrate-capped gold nanoparticles with arginine derivatives agmatine and N-methyl-l-arginine reveal that modification at the guanidinium group significantly diminishes the propensity for linear assembly of the nanoparticles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A viable method of encapsulating block copolymer micelles inside vesicles using a conjugated polymer is reported in this study. Self-assembly and complexation between an amphiphilic block copolymer poly(methyl methacrylate)-b-poly(acrylic acid) (PMMA-b-PAA) and a rod-like conjugated polymer polyaniline (PANI) in aqueous solution were studied using transmission electron microscopy, atomic force microscopy and dynamic light scattering. The complexation and morphology transformation were driven by electrostatic interaction between PANI and the PAA block of the block copolymer. Addition of PANI to PMMA-b-PAA induced the morphology transformation from micelles to irregular vesicles through vesicles, thick-walled vesicles (TWVs) and multimicellar vesicles (MMVs). Among the observed morphologies, MMVs were observed for the first time. Morphology transformation was studied as a function of aniline/acrylic acid molar ratio ([ANI]/[AA]). Micelles were observed for the pure block copolymer, while vesicles and TWVs were observed at [ANI]/[AA] = 0.1 and 0.3, respectively. MMVs were observed at [ANI]/[AA] = 0.5 and irregular vesicles were observed for molar ratios at 0.7 and above. Clearly, a conjugated polymer like polyaniline can induce a morphology transformation even at its lower concentrations and produce complex morphologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using the rigid norbornane scaffold, a series of low-molecular-weight organogelators has been synthesised and evaluated. Three separate compounds (16, 19 and 20) were identified as organogelators in three aromatic organic solvents (PhMe, anisole and o-xylene). The formation of fibrillar assemblies at nanometre level was confirmed using atomic force microscopy and transmission electron microscopy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Blends between the widely used thermoset resin, epoxy, and the most abundant organic material, natural cellulose are demonstrated for the first time. The blending modification induced by charge transfer complexes using a room temperature ionic liquid, leads to the formation of thermally flexible thermoset materials. The blend materials containing low concentrations of cellulose were optically transparent which indicates the miscibility at these compositions. We observed the existence of intermolecular hydrogen bonding between epoxy and cellulose in the presence of the ionic liquid, leading to partial miscibility between these two polymers. The addition of cellulose improves the tensile mechanical properties of epoxy. This study reveals the use of ionic liquids as a compatible processing medium to prepare epoxy thermosets modified with natural polymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Composite biomaterials provide alternative materials that improve on the properties of the individual components and can be used to replace or restore damaged or diseased tissues. Typically, a composite biomaterial consists of a matrix, often a polymer, with one or more fillers that can be made up of particles, sheets or fibres. The polymer matrix can be chosen from a wide range of compositions and can be fabricated easily and rapidly into complex shapes and structures. In the present study we have examined three size fractions of collagen-containing particles embedded at up to 60% w/w in a poly(vinyl alcohol) (PVA) matrix. The particles used were bone particles, which are a mineral-collagen composite and demineralised bone, which gives naturally cross-linked collagen particles. SEM showed well dispersed particles in the PVA matrix for all concentrations and sizes of particles, with FTIR suggesting collagen to PVA hydrogen bonding. Tg of membranes shifted to a slightly lower temperature with increasing collagen content, along with a minor amount of melting point depression. The modulus and tensile strength of membranes were improved with the addition of both particles up to 10 wt%, and were clearly strengthened by the addition, although this effect decreased with higher collagen loadings. Elongation at break decreased with collagen content. Cell adhesion to the membranes was observed associated with the collagen particles, indicating a lack of cytotoxicity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a new method for ultrasensitive detection of Cu(2+), which is based on changes in the tunnelling recognition current across self-assembled core-satellite gold nanoparticles (GNPs) networks functionalised with amino acids (l-cysteine). The addition of copper ions induces the formation of GNP/l-cysteine/Cu(2+)/l-cysteine/GNP molecular junctions and generates a significant decrease in the resistance through the networks. The networks are ultrasensitive to over ten orders range of copper ion concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The formation of rare flower like micelles in poly(styrene)-block-poly(4-vinyl pyridine)/poly(acrylic acid) (PS-b-P4VP/PAA) diblock copolymer/homopolymer complexes is reported. The self-assembly as well as the morphological changes in the complexes were induced by the addition of a high molecular weight PAA/ethanol solution into the PS-b-P4VP solution in dimethyl formamide followed by dialyses. The composition-dependent micelles were varying in size and shape with increase in PAA concentration in solution. The complex aggregates in solution were characterized by dynamic light scattering (DLS) whereas morphologies in the solid complexes were observed using transmission electron microscopy (TEM). Flower like micelles are formed in complexes at 20 wt% PAA concentration followed by 'spikey' micellar assemblies at 40 wt% PAA. The size of the micelles was found to be increased upon the addition of PAA into the block copolymer solution. Infrared studies revealed the intermolecular hydrogen bonding interactions between the complementary binding sites on PAA and the P4VP block of the block copolymer. Finally, a model was proposed to explain the self-assembly and morphological transitions in these complexes based on the experimental results obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The novel duolayer system, comprising a monolayer of ethylene glycol monooctadecyl ether (C18E1) and the water-soluble polymer poly(vinylpyrrolidone) (PVP), has been shown to resist forces such as wind stress to a greater degree than the C18E1 monolayer alone. This paper reports all-atom molecular dynamics simulations comparing the monolayer (C18E1 alone) and duolayer systems under an applied force parallel to the air/water interface. The simulations show that, due to the presence of PVP at the interface, the duolayer film exhibits an increase in chain tilt, ordering, and density, as well as a lower lateral velocity compared to the monolayer. These results provide a molecular rationale for the improved performance of the duolayer system under wind conditions, as well as an atomic-level explanation for the observed efficacy of the duolayer system as an evaporation suppressant, which may serve as a useful guide for future development for thin films where resistance to external perturbation is desirable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultra-high-molecular-weight polyethylene (UHMWPE) fibers have exceptionally higher specific strength and stiffness compared with other high-performance fibers. However, the interfacial adhesion and compressive performance of UHMWPE fiber-reinforced polymer composites (FPCs) are extremely low. The challenges are to achieve load transfer at the interface between the fiber and matrix at a molecular level. Here, we show that plasma pre-treatment of UHMWPE fibers followed by coating with polypyrrole (PPy) results in an 848% improvement in the interfacial adhesion and 54% enhancement in compressive performance. This method takes advantage of a toughening mechanism observed in spider silk and collagen, which the hydrogen bond power the load transfer. The results showed that these improvements of interfacial adhesion and compressive strength were attributed to hydrogen-bonding interactions between the plasma pre-treated UHMWPE and PPy, which improves the fiber-matrix-fiber load transfer process. In addition, the hydrogen-bonded PPy coatings also endowed durability electrical conductivity properties of the UHMWPE fiber.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report for the first time the use of Nα-Boc-l-tryptophan for the synthesis of amphiphilic BAB triblock copolymers for potential drug delivery applications. A library of poly(Nα-Boc-l-tryptophan)-block-poly(ethylene glycol)-block-poly(Nα-Boc-l-tryptophan) (PBoclTrp-b-PEG-b-PBoclTrp) amphiphilic copolymers were synthesized through the ring opening polymerization of Nα-Boc-l-tryptophan Nα-carboxy anhydride as initiated by diamino-terminated PEG of fixed molecular weight (Mn 3350). The influence of the hydrophobic block length over self-assembly was investigated for 4 of the BAB copolymers of molecular weights varying between Mn 5000 and Mn 17000. It was found that an increase in hydrophobic block length led to an increase in hydrodynamic size of aggregates in solution, as well as a decrease in critical micelle concentration. TEM analysis showed the formation of spherical micelles with the largest of the copolymers forming interconnected networks of spherical micelles. The influence of hydrophobic block length over the formation of secondary structure was analyzed using circular dichroism and infrared spectroscopy. Collectively we found that the presence of t-Boc protected l-tryptophan leads to the preferential formation of α-helix secondary structure through hydrogen bonding, which, in a drug delivery vehicle context, could help in controlling drug release. Also, it is believed that the use of novel Nα-Boc-l-tryptophan could improve drug stabilization in the hydrophobic core via π-π interactions between indole rings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Silkworm silk fibers are core-shell composites of fibroin and sericin proteins. Studying the interactions between fibroin and sericin is essential for understanding the properties of these composites. It isobserved that compared to the domestic silk cocoon Bombyx mori (B. mori), the adhesion between fibroin and sericin from the wild silk cocoon, Antheraea pernyi (A. pernyi), is significantly stronger with a higherdegree of heterogeneity. The adsorption of A. pernyi sericin on its fibroin is almost twice the value for B.mori sericin on fibroin, both showing a monolayer Langmuir adsorption. 1H NMR and FTIR studiesdemonstrate on a molecular level the stronger interactions and the more intensive complex formation between A. pernyi fibroin and sericin, facilitated by the hydrogen bonding between glycine and serine.The findings of this study may help the design of composites with superior interfacial adhesion between different components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

While developing bis-camphorsulfonyl urea as a hydrogen-bonding catalysts, we discovered that the native conformation of the catalyst is unsuitable for inducing enantioselectivity. By complexing the catalyst with weakly Lewis acidic sodium cations, we were able to change the conformation of the catalyst and attain a significant improvement in the selectivity. We provide structural information from X-ray crystallography to show that the uncomplexed catalyst is indeed in an unfavorable conformation. Infrared and Raman spectroscopic studies show that sodium binds the catalyst through the carbonyl and sulfonyl groups. Simulated IR and Raman spectra match well with the experimentally recorded spectra, thereby corroborating the proposed conformational change. This result shows that weak Lewis acids can be used to tune the conformation of hydrogen-bonding catalysts and enhance the selectivity of reaction catalyzed by these systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mixed monolayers of 1-octadecanol (C18OH) and ethylene glycol monooctadecyl ether (C18E1) were studied to assess their evaporation suppressing performance. An unexpected increase in performance and stability was found around the 0.5:0.5 bicomponent mixture and has been ascribed to a synergistic effect of the monolayers. Molecular dynamics simulations have attributed this to an additional hydrogen bonding interaction between the monolayer and water, due to the exposed ether oxygen of C18E1 in the mixed system compared to the same ether oxygen in the pure C18E1 system. This interaction is maximized around the 0.5:0.5 ratio due to the particular interfacial geometry associated with this mixture.