88 resultados para Exchangeable sodium


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The aim of this study was to determine the effect and reliability of acute and chronic sodium bicarbonate ingestion for 2000-m rowing ergometer performance (watts) and blood bicarbonate concentration [HCO3 -]. Methods: In a crossover study, 7 well-trained rowers performed paired 2000-m rowing ergometer trials under 3 double-blinded conditions: (1) 0.3 grams per kilogram of body mass (g/kg BM) acute bicarbonate; (2) 0.5 g/ kg BM daily chronic bicarbonate for 3 d; and (3) calcium carbonate placebo, in semi-counterbalanced order. For 2000-m performance and [HCO3 -], we examined differences in effects between conditions via pairwise comparisons, with differences interpreted in relation to the likelihood of exceeding smallest worthwhile change thresholds for each variable. We also calculated the within-subject variation (percent typical error). Results: There were only trivial differences in 2000-m performance between placebo (277 ± 60 W), acute bicarbonate (280 ± 65 W) and chronic bicarbonate (282 ± 65 W); however, [HCO3 -] was substantially greater after acute bicarbonate, than with chronic loading and placebo. Typical error for 2000-m mean power was 2.1% (90% confidence interval 1.4 to 4.0%) for acute bicarbonate, 3.6% (2.5 to 7.0%) for chronic bicarbonate, and 1.6% (1.1 to 3.0%) for placebo. Postsupplementation [HCO3 -] typical error was 7.3% (5.0 to 14.5%) for acute bicarbonate, 2.9% (2.0 to 5.7%) for chronic bicarbonate and 6.0% (1.4 to 11.9%) for placebo. Conclusion: Performance in 2000-m rowing ergometer trials may not substantially improve after acute or chronic bicarbonate loading. However, performances will be reliable with both acute and chronic bicarbonate loading protocols. ABSTRACT FROM AUTHOR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context: Sodium bicarbonate (NaHCO3) is often ingested at a dose of 0.3 g/kg body mass (BM), but ingestion protocols are inconsistent in terms of using solution or capsules, ingestion period, combining NaHCO3 with sodium citrate (Na3C6H5O7), and coingested food and fluid. Purpose: To quantify the effect of ingesting 0.3 g/ kg NaHCO3 on blood pH, [HCO3 -], and gastrointestinal (GI) symptoms over the subsequent 3 hr using a range of ingestion protocols and, thus, to determine an optimal protocol. Methods: In a crossover design, 13 physically active subjects undertook 8 NaHCO3 experimental ingestion protocols and 1 placebo protocol. Capillary blood was taken every 30 min and analyzed for pH and [HCO3 -]. GI symptoms were quantified every 30 min via questionnaire. Statistics used were pairwise comparisons between protocols; differences were interpreted in relation to smallest worthwhile changes for each variable. A likelihood of >75% was a substantial change. Results: [HCO3 -] and pH were substantially greater than in placebo for all other ingestion protocols at almost all time points. When NaHCO3 was coingested with food, the greatest [HCO3 -] (30.9 mmol/kg) and pH (7.49) and lowest incidence of GI symptoms were observed. The greatest incidence of GI side effects was observed 90 min after ingestion of 0.3 g/kg NaHCO3 solution. Conclusions: The changes in pH and [HCO3 -] for the 8 NaHCO3-ingestion protocols were similar, so an optimal protocol cannot be recommended. However, the results suggest that NaHCO3 coingested with a high-carbohydrate meal should be taken 120-150 min before exercise to induce substantial blood alkalosis and reduce GI symptoms. ABSTRACT FROM AUTHOR

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gold standard method for measuring population sodium intake is based on a 24 h urine collection carried out in a random population sample. However, because participant burden is high, response rates are typically low with less than one in four agreeing to provide specimens. At this low level of response it is possible that simply asking for volunteers would produce the same results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Salt reduction efforts usually have a strong focus on consumer education. Understanding the association between salt consumption levels and knowledge, attitudes and behaviours towards salt should provide insight into the likely effectiveness of education-based programs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physicochemical properties of a range of NaNTf2 (or NaTFSI) salt concentrations in N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (or C3mpyrFSI) ionic liquid were investigated by DSC, conductivity, cyclic voltammetry and diffusivity studies. Cyclic voltammetry indicated a stable sodium plating behavior with a current of 5 mA cm(-2) at 25 °C to 20 mA cm(-2) at 100 °C, along with high reversibility identifying this electrolyte as a possible candidate for sodium-ion or sodium metal battery applications. (23)Na NMR chemical shifts and spectral linewidths (FWHM) indicate a complex coordination of the Na(+) ion which is dependent on both temperature and salt concentration with an apparently stronger coordination to the NTf2 anion upon increasing the NaNTf2 concentration. Temperature dependent PFG-NMR diffusion measurements show that both FSI and NTf2 have a comparable behaviour although the smaller FSI anion is more diffusive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of rare earth 4-hydroxycinnamate compounds including Ce(4OHCin)3, La(4OHCin)3, and Pr(4OHCin)3 has been synthesized and evaluated as novel inhibitors for carbon dioxide corrosion of steel in CO2-saturated sodium chloride solutions. Electrochemical measurements and surface analysis have shown that these REM(4OHCin)3 compounds effectively inhibited CO2 corrosion by forming protective inhibiting deposits that shut down the active electrochemical corrosion sites on the steel surface. Inhibition efficiency was found to increase in the order Ce(4OHCin)3 < La(4OHCin)3 < Pr(4OHCin)3 and with increase in inhibitor concentration up to 0.63 mM. Detailed insights into corrosion inhibition mechanism of these compounds in carbon dioxide environment are also provided.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High sodium intake during infancy and early childhood can change salt preference and blood pressure trajectories across life, representing a modifiable cardiovascular risk factor. Describing young children's sodium intake is important for informing effective targets for sodium reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrode materials are being developed to realise sodium-ion batteries that can provide energy storage solutions. Here, we develop amorphous carbon coated Na7Fe7(PO4)6F3, prepared by combining hydrothermal and solid state reaction methods, as an insertion electrode for sodium-ion batteries applications. Na7Fe7(PO4)6F3 particles are surrounded by a thin layer (∼1.5–2 nm) of amorphous carbon. The Na7Fe7(PO4)6F3/C composite cathode undergoes reversible sodium intercalation/de-intercalation with an average operational potential of ∼3.0 V (vs Na+/Na). This cathode has a capacity of 65 mA h g−1 at 100 mA g−1 current after 60 cycles and features twice higher capacity than that of an uncoated Na7Fe7(PO4)6F3 sample. Therefore, the carbon-coated Na7Fe7(PO4)6F3 composite presents feasible sodium intercalation/de-intercalation capacity, offering possibilities for developing a low cost, high performance sodium-ion battery positive electrode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, shell powder was modified by sodium stearate surface modifier for improving the compatibility of SP with polymer materials. The surface modifiers influence on the physical and chemical properties of SP were studied by scanning electron microscope(SEM), fourier infrared spectrum(FT-IR), surface contact angle meter, XRD diffraction analysis meter and other modern instruments and analysis method. The results showed that the surface modifier was successfully coupled to the shell powder surface. After surface modifier modification, the interfacial compatibility of the shell powder with polymer materials was effectively improved. The contact angle of shell powder surface increased from 73.5 ° to 110.8 °, along with the dosage of sodium stearate surface modifier was 4.0%. All results suggested that modified shell powder is promising for using as a reinforcement filler in polymer materials. © (2014) Trans Tech Publications, Switzerland.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the expected theoretical capacity of 2596 mA h g-1, phosphorus is considered to be the highest capacity anode material for sodium-ion batteries and one of the most attractive anode materials for lithium-ion systems. This work presents a comprehensive study of phosphorus-carbon nanocomposite anodes for both lithium-ion and sodium-ion batteries. The composite electrodes are able to display high initial capacities of approximately 1700 and 1300 mA h g-1 in lithium and sodium half-cells, respectively, when the cells are tested within a larger potential windows of 2.0-0.01 V vs. Li/Li+ and Na/Na+. The level of demonstrated capacity is underpinned by the storage mechanism, based on the transformation of phosphorus to Li3P phase for lithium cells and an incomplete transformation to Na3P phase for sodium cells. The capacity deteriorates upon cycling, which is shown to originate from disintegration of electrodes and their delamination from current collectors by post-cycling ex situ electron microscopy. Stable cyclic performance at the level of ∼700 and ∼350-400 mA h g-1 can be achieved if the potential windows are restricted to 2.0-0.67 V vs. Li/Li+ for lithium and 2-0.33 vs. Na/Na+ for sodium half-cells. The results are critically discussed in light of existing literature reports

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microencapsulation of tuna oil in gelatin-sodium hexametaphosphate (SHMP) using complex coacervation was optimised for the stabilisation of omega-3 oils, for use as a functional food ingredient. Firstly, oil stability was optimised by comparing the accelerated stability of tuna oil in the presence of various commercial antioxidants, using a Rancimat™. Then zeta-potential (mV), turbidity and coacervate yield (%) were measured and optimised for complex coacervation. The highest yield of complex coacervate was obtained at pH 4.7 and at a gelatin to SHMP ratio of 15:1. Multi-core microcapsules were formed when the mixed microencapsulation system was cooled to 5 °C at a rate of 12 °C/h. Crosslinking with transglutaminase followed by freeze drying resulted in a dried powder with an encapsulation efficiency of 99.82% and a payload of 52.56%. Some 98.56% of the oil was successfully microencapsulated and accelerated stability using a Rancimat™ showed stability more than double that of non-encapsulated oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium Iodide Symporter (NIS), a therapeutic gene, was studied for the first time in retinoblastoma (RB) correlating the expression with clinicopathological invasiveness of the tumor. The specificity of EpCAM based NIS gene therapy was demonstrated in breast cancer cell as a proof of concept model via 1) EpCAM as tissue specific promoter and 2) nanoformulation, both of which showed encouraging outcomes. In addition, for the first time the upregulated expression of splice variants of survivin, Bax and Bcl-2 in RB tumors was explored indicating their possible role in tumor progression through apoptosis dysregulation. Thus, the above study achieved a profound knowledge about NIS and apoptotic genes in extrathyroidal tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The investigation of solid state sodium ion electrolytes based on Organic Ionic Plastic Crystals were carried out for potential use in the electrochemical devices such as batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the thermal, structural and conductivity properties of the organic ionic plastic crystal (OIPC) N-methyl-N-methyl-pyrrolidinium dicyanamide [C1mpyr][N(CN)2] mixed with the sodium salt Na[N(CN)2]. The DSC thermal traces indicate that an isothermal transition, which may be a eutectic melting, occurs at ~ 89 °C, below which all compositions are entirely in the solid phase. At 20 mol% Na[N(CN)2], this transition is the final melt for this mixture, and a new liquidus peak grows beyond 20 mol% Na[N(CN)2]. The III- > II solid-solid phase transition continues to be evident at ~- 2 °C. The microstructure for all the mixtures indicated a phase separated morphology where precipitates can be clearly observed. Most likely, these precipitates consist of a Na-rich second phase. This was also suggested from the vibrational spectroscopy and the 23Na NMR spectra. The lower concentrations of Na[N(CN)2] present complex 23Na MAS spectra, suggesting more than one sodium ion environment is present in these mixtures consistent with complex phase behavior. Unlike other OIPCs where the ionic conductivity usually increases upon doping or mixing in a second component, the conductivity of these mixtures remains relatively constant and above 10- 4 S cm- 1 at ∼ 80 °C, even in the solid state. Such high conductivities suggest these materials may be promising to be used for all solid-state electrochemical devices.