135 resultados para time delay systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced order multi-functional observer design for multi-input multi-utput (MIMO) linear time-invariant (LTI) systems with constant delayed inputs is studied. This research is useful in the input estimation of LTI systems with actuator delay, as well as system monitoring and fault detection of these systems. Two approaches for designing an asymptotically stable functional observer for the system are proposed: delay-dependent and delay-free. The delay-dependent observer is infinite-dimensional, while the delay-free structure is finite-dimensional. Moreover, since the delay-free observer does not require any information on the time delay, it is more practical in real applications. However, the delay-dependent observer contains less restrictive assumptions and covers more variety of systems. The proposed observer design schemes are novel, simple to implement, and have improved numerical features compared to some of the other available approaches to design (unknown-input) functional observers. In addition, the proposed observers usually possess lower order than ordinary Luenberger observers, and the design schemes do not need the observability or detectability requirements of the system. The necessary and sufficient conditions of the existence of an asymptoticobserver in each scenario are explored. The extensions of the proposed observers to systems with multiple delayed-inputs are also discussed. Several numerical examples and simulation results are employed to support our theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address the problem of observer design for a class of nonlinear discrete-time systems in the presence of delays and unknown inputs. The nonlinearities studied in this work satisfy the one-sided Lipschitz and quadratically inner-bounded conditions which are more general than the traditional Lipschitz conditions. Both H∞ observer design and asymptotic observer design with reduced-order are considered. The designs are novel compared to other relevant nonlinear observer designs subject to time delays and disturbances in the literature. In order to deal with the time-delay issue as well as the bilinear terms which usually appear in the problem of designing observers for discrete-time systems, several mathematical techniques are utilized to deduce observer synthesis conditions in the linear matrix inequalities form. A numerical example is given to demonstrate the effectiveness and high performance of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Designing delay-dependent functional observers for LTI systems with multiple known time-varying state delays and unknown time-varying input delays is studied. The input delays are arbitrary, but the state delays should be upper-bounded. In addition, two scenarios of slow-varying and fast-varying state delays are investigated. The results of the paper can also be considered as one of the first contributions considering unknown-input functional observer design for linear systems with multiple time-varying state delays. Based on the Lyapunov Krasovskii approach, delay-dependent sufficient conditions of the exponential stability of the observer in each scenario are established in terms of linear matrix inequalities. Because of using effective techniques, such as the descriptor transformation and an advanced weighted integral inequality, the proposed stability criteria can result in larger stability regions compared with the other papers that study functional observers for time-varying delay systems. Furthermore, to help with the design procedure, a genetic algorithm-based scheme is proposed to adjust a weighting matrix in the established linear matrix inequalities. Two numerical examples illustrate the design procedure and demonstrate the efficacy of the proposed observer in each scenario.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the problem of designing state observers for a class of one-sided Lipschitz time-delay systems subject to disturbances. Not only the plants but also the outputs of the systems are subject to time delays and disturbances. The one-sided Lipschitz and quadraticallyinner-bounded conditions, which are more general than the traditional Lipschitz condition, are utilized to cover a broader class of nonlinearities. Based on the Lyapunov-Krasovskii approach, a robust observer design is proposed where synthesis condition is derived in terms of linear matrixinequality (LMI). A numerical example is given to show the effectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of exponential stability analysis of two-dimensional (2D) linearcontinuous-time systems with directional time-varying delays. An abstract Lyapunov-like theorem whichensures that a 2D linear system with delays is exponentially stable for a prescribed decay rate is exploitedfor the first time. In light of the abstract theorem, and by utilizing new 2D weighted integral inequalitiesproposed in this paper, new delay-dependent exponential stability conditions are derived in terms oftractable matrix inequalities which can be solved by various computational tools to obtain maximumallowable bound of delays and exponential decay rate. Two numerical examples are given to illustrate theeffectiveness of the obtained results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

System monitoring and fault diagnosis capabilities are the most important aspects in improving safety and reliability of automatic control systems. This research proposed new methodologies on fault diagnosis and estimation for complex uncertain systems. As a result of this research, complex industrial plants can now be more effectively controlled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the H∞ control problem of neural networks with time-varying delays. The system under consideration is subject to time-varying delays and various activation functions. Based on constructing some suitable Lyapunov-Krasovskii functionals, we establish new sufficient conditions for H∞ control for two cases of time-varying delays: (1) the delays are differentiable and have an upper bound of the delay-derivatives and (2) the delays are bounded but not necessary to be differentiable. The derived conditions are formulated in terms of linear matrix inequalities, which allow simultaneous computation of two bounds that characterize the exponential stability rate of the solution. Numerical examples are given to illustrate the effectiveness of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the design of minimal-order residual generators for the purpose of detecting and isolating actuator and/or component faults in dynamical systems. We first derive existence conditions and design residual generators using only first-order observers to detect and identify the faults. When the first-order functional observers do not exist, then based on a parametric approach to the solution of a generalized Sylvester matrix equation, we develop systematic procedures for designing residual generators utilizing minimal-order functional observers. Our design approach gives lower-order residual generators than existing results in the literature. The advantages for having such lower-order residual generators are obvious from the economical and practical points of view as cost saving and simplicity in implementation can be achieved, particularly when dealing with high-order complex systems. Numerical examples are given to illustrate the proposed fault detection and isolation schemes. In all of the numerical examples, we design minimum-order residual generators to effectively detect and isolate actuator and/or component faults in the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chaotic synchronization of two time-delay coupled Hindmarsh–Rose neurons via nonlinear control is investigated in this paper. Both the intrinsic slow current delay in a single Hindmarsh–Rose neuron and the coupling delay between the two neurons are considered. When there is no control, chaotic synchronization occurs for a limited range of the coupling strength and the time-delay values. To obtain complete chaotic synchronization irrespective of the time-delay or the coupling strength, we propose two nonlinear control schemes. The first uses adaptive control for chaotic synchronization of two electrically coupled delayed Hindmarsh–Rose neuron models. The second derives the sufficient conditions to ensure a complete synchronization between master and slave models through appropriate Lyapunov–Krasovskii functionals and the linear matrix inequality technique. Numerical simulations are carried out to show the effectiveness of the proposed methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Active vibration control using time delay for a cantilever beam is developed in this paper. The equation of motion of the system is developed using the discrete standard formulation, and the discrete quadratic function is used to design the controller. The original contribution in this paper is using a genetic algorithm to determine the optimal time delay feedback for active vibration control of a cantilever beam. Simulations of the beam demonstrated that the genetic algorithm correctly identified the time delay which produced the quickest attenuation of unwanted vibrations for both mode one and mode two. In terms of frequency response, the optimal time delay for both modes reduced the resonant amplitude. In a mixed mode situation, the simulation demonstrated that an optimal time delay could be identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the robust stabilization and Hcontrol problem for a class of linear polytopic systems with continuously distributed delays. The control objective is to design a robust H controller that satisfies some exponential stability constraints on the closed-loop poles. Using improved parameter-dependent Lyapunov Krasovskii functionals, new delay-dependent conditions for the robust H control are established in terms of linear matrix inequalities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we address the problem of finding outer bound of forward reachable sets and inter-bound of backward reachable sets of switched systems with an interval time-varying delay and bounded disturbances. By constructing a flexible Lyapunov–Krasovskii functional combining with some recent refined integral-based inequalities, some sufficient conditions are derived for the existence of (1) the smallest possible outer bound of forwards reachable sets; and (2) the largest possible inter-bound of backward reachable sets. These conditions are delay dependent and in the form of linear matrix inequalities, which therefore can be efficiently solved by using existing convex algorithms. A constructive geometric design of switching laws is also presented. Two numerical examples with simulation results are provided to demonstrate the effectiveness of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is concerned with the problem of passivity analysis of neural networks with an interval time-varying delay. Unlike existing results in the literature, the time-delay considered in this paper is subjected to interval time-varying without any restriction on the rate of change. Based on novel refined Jensen inequalities and by constructing an improved Lyapunov-Krasovskii functional (LKF), which fully utilizes information of the neuron activation functions, new delay-dependent conditions that ensure the passivity of the network are derived in terms of tractable linear matrix inequalities (LMIs) which can be effectively solved by various computational tools. The effectiveness and improvement over existing results of the proposed method in this paper are illustrated through numerical examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, the authors address a new problem of finding, with a pre-specified time, bounds of partial states of non-linear discrete systems with a time-varying delay. A novel computational method for deriving the smallest bounds is presented. The method is based on a new comparison principle, a new algorithm for finding the infimum of a fractal function, and linear programming. The effectiveness of our obtained results is illustrated through a numerical example.