92 resultados para Sheet-piling.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variation in the incoming sheet material and fluctuations in the press setup is unavoidable in many stamping plants. The effect of these variations can have a large influence on the quality of the final stamping, in particular, unpredictable springback of the sheet when the tooling is removed. While stochastic simulation techniques have been developed to simulate this problem, there has been little research that connects the influence of the noise sources to springback. This paper characterises the effect of material and process variation on the robustness of springback for a semi-cylindrical channel forming operation, which shares a similar cross-section profile as many automotive structural components. The study was conducted using the specialised sheet metal forming package AutoFormTM Sigma, for which a series of stochastic simulations were performed with each of the noise sources incrementally introduced. The effective stress and effective strain scatter in a critical location of the part was examined and a response window, which indicates the respective process robustness, was defined. The incremental introduction of the noise sources allows the change in size of the stressstrain response window to be tracked. The results showed that changes to process variation parameters, such as BHP and friction coefficient, directly affect the strain component of the stressstrain response window by altering the magnitude of external work applied to forming system. Material variation, on the other hand, directly affected the stress component of the response window. A relationship between the effective stressstrain response window and the variation in springback was also established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the automotive industry, press production rates often need to be reduced in order to minimize tool wear issues and successfully stamp advanced high strength steels. This indicates that heating affects may be important. This paper examines friction and deformational heating at the die radius during sheet metal stamping, using finite element analysis. The results show that high temperatures, of up to 130°C, can occur at the die radius surface. Such behavior has not been previously reported in the literature, for what is expected to be ‘cold’ sheet metal stamping conditions. It will be shown that the temperature rise is due to the increased contact stresses and increased plastic work, associated with stamping AHSS. Consequently, new insights into the local contact conditions in sheet metal stamping were obtained. The outcomes of this work may impact the wear models and tests employed for future tool wear analyses in sheet metal stamping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper directly examines the contact sliding distance experienced during a typical sheet metal stamping process-an area that has largely been neglected in the literature. A method to numerically quantify the sliding distance is proposed. The sliding distance predicted from this method, and the contact pressure obtained from numerical simulation, allow the recently identified time-dependent contact conditions on the die and blank surfaces to be completely characterized. Consequently, a new insight into the wear/galling that occurs at the die radius in sheet metal stamping is gained. The results show that the region close to zero degrees on the die radius is likely to experience the most wear, with the identified transient stage contributing to a large proportion of the total wear. Additionally, the region on the blank surface often observed to be heavily burnished - the die impact line - is estimated to experience the highest wear severity due to the transient contact conditions. The proposed method to numerically quantify the sliding contact conditions can be applied as a general approach to study any other two-body sliding contact situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As-received hot-rolled 5.6 mm thick IF steel sheet was symmetrically/ asymmetrically cold rolled at room temperature down to 1.9 mm. The asymmetric rolling was carried out in monotonic (an idle roll is always on the same side of the sheet) and reversal (the sheet was turned 180° around the rolling direction between passes) modes. Microstructure, texture and mechanical properties were analysed. The observed differences in structure and mechanical properties were modest, and therefore further investigation of the effects of other kinds of asymmetry is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demand to reduce the use of lubricants and increase tool life in sheet metal stamping has resulted in increased research on the sliding contact between the tool and the sheet materials. Unlubricated sliding wear tests for soft carbon steel sliding on D2 tool steel were performed using a pin-on-disk tribometer. The results revealed that temperature has an influencing role in the wear of tool steel and that material transfer between tool and sheet can be minimized at a certain temperature range in sheet metal stamping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximate models are often used for the following purposes: in on-line control systems of metal forming processes where calculation speed is critical; to obtain quick, quantitative information on the magnitude of the main variables in the early stages of process design; to illustrate the role of the major variables in the process; as an initial check on numerical modelling; and as a basis for quick calculations on processes in teaching and training packages. The models often share many similarities; for example, an arbitrary geometric assumption of deformation giving a simplified strain distribution, simple material property descriptions - such as an elastic, perfectly plastic law - and mathematical short cuts such as a linear approximation of a polynomial expression. In many cases, the output differs significantly from experiment and performance or efficiency factors are developed by experience to tune the models. In recent years, analytical models have been widely used at Deakin University in the design of experiments and equipment and as a pre-cursor to more detailed numerical analyses. Examples that are reviewed in this paper include deformation of sandwich material having a weak, elastic core, load prediction in deep drawing, bending of strip (particularly of ageing steel where kinking may occur), process analysis of low-pressure hydroforming of tubing, analysis of the rejection rates in stamping, and the determination of constitutive models by an inverse method applied to bending tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses our recent research on wear at the die radius in sheet metal stamping. According to wear theory, contact pressure and sliding distance are the two dominant factors in determining sliding wear. We applied the finite element analysis to accurately quantify the contact pressure and sliding distance at the die radius in sheet metal stamping. The results were then applied to analyze sliding wear at the die radius. We found that a typical two-peak steady-state contact pressure response exists during a channel forming process. The steady-state contact pressure response was preceded by an initial transient response, which produced extremely large and localized contact pressures. We proposed a method to numerically quantify the sliding distance, which was applied to examine the contact sliding distance at the die radius. Correlating the contact pressure and sliding distance, a new insight into the wear/galling that occurs at the die radius in sheet metal stamping was gained. The results show that the region close to zero degrees on the die radius is likely to experience the most wear, with the identified transient stage contributing to a large proportion of the total wear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four different cellulose nanofibers samples were prepared from northern bleached softwood kraft fibers. Fiber diameter distributions were measured from SEM images. Fiber aspect ratios ranging from 84 to 146 were estimated from fiber suspension sedimentation measurements. Three samples had heterogeneous distributions of fiber diameters, while one sample was more homogeneous. Sheet forming experiments using filters with pores ranging from 150 to 5 μm showed that the samples with a heterogeneous distribution of fiber dimensions could be easily formed into sheets at 0. 2% initial solids concentration with all filter openings. On the other hand, sheets could only be formed from the homogenous sample by using 0. 5% or more initial solids content and a lower applied vacuum and smaller filter openings. The forming data and estimated aspect ratios show reasonable agreement with the predictions of the crowding number and percolation theories for the connectivity and rigidity thresholds for fiber suspensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After 2% predeformation, the baking treatment with different schedule was carried out for low silicon TRIP steel sheet with niobium. The effects of baking temperature and time on microstructures and mechanical properties were investigated. The results showed that with increasing the baking temperature and time, the volume fraction of retained austenite decreases, and the volume fraction of tempered martensite increases; as baking temperature ranges from 80°C to 170°C, the bake-hardening (BH) value increases obviously, while from 170°C to 230°C, the variation of BH value is very slight; as baking time ranges from 2 min to 20 min, the BH value increases significantly, while the BH value decreases when baking time exceeds 20 min. So that when the baking temperature is 170°C and the baking time is 20 min, the low silicon TRIP steel sheet exhibits good bake-hardening behavior, and the highest BH value is above 70 MPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paint baking treatment was carried out in a silicon oil bath at 170 °C for 20 min for Si-Al-Mn TRIP Steel sheet with different prestrains, and effect of prestrain on microstructures and properties was studied before and after baking. The results show that with the increasing of prestrain amount during prestraining and baking, the volume fraction of retained austenite decreases, and the volume fraction of martensite and bainite increases as well as yield strength increases; as prestrain ranges from 0 to 4%, the baking-hardening (BH) value increases; while the prestrain ranges from 4% to 16%, the BH value decreases; when the prestrain amount is 4%, the highest BH value is about 70 MPa for Si-Al-Mn TRIP steel sheet with niobium, which displays excellent baking-hardening behavior.