121 resultados para Plastic debris


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research has developed an improved understanding of the structure-property relationships, fabrication technology and deformation mechanism of light bulk ultrafine grained materials and metallic multilayered structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orb-weaving spider Nephila edulis incorporates into its web a band of decaying animal and plant matter. While earlier studies demonstrate that larger spiders utilise these debris bands as caches of food, the presence of plant matter suggests additional functions. When organic and plastic items were placed in the webs of N. edulis, some of the former but none of the latter were incorporated into the debris band. Using an Y-maze olfactometer, we show that sheep blowflies Lucilia cuprina are attracted to recently collected debris bands, but that this attraction does not persist over time. These data reveal an entirely novel foraging strategy, in which a sit-and-wait predator attracts insect prey by utilising the odours of decaying organic material. The spider's habit of replenishing the debris band may be necessary to maintain its efficacy for attracting prey.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A low current density preconditioning process, which produces an improved lithium transport mechanism is created by the action of charge flow through a plastic crystal electrolyte (figure). A reduction in cell polarisation at high applied current density is demonstrated which approaches the rates required for these electrolytes to be used in practical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agitate (Plastic Short) is a short instrumental of a plastic wrapper sound being synthesised and two synth percussion sounds. A percussive short.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel organic ionic plastic crystal (OIPC) electrolyte based on a quaternary ammonium cation and the triflate anion has been synthesized, which shows fast proton transport and high thermal stability in the solid state when doped with triflic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new liquid and solid state electrolytes is paramount for the advancement of electrochemical devices such as lithium batteries and solar cells. Ionic liquids have shown great promise in both these applications. Here we demonstrate the use of phosphonium cations with small alkyl chain substituents, in combination with a range of different anions, to produce a variety of new halide free ionic liquids that are fluid, conductive and with sufficient thermal stability for a range of electrochemical applications. Walden plot analysis of the new phosphonium ionic liquids shows that these can be classed as "good" ionic liquids, with low degrees of ion pairing and/or aggregation, and the lithium deposition and stripping from one of these ionic liquids has been demonstrated. Furthermore, for the first time phosphonium cations have been used to form a range of organic ionic plastic crystals. These materials can show significant ionic conductivity in the solid state and thus are of great interest as potential solid-state electrolyte materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dye-sensitized solar cells are an increasingly promising alternative to conventional silicon solar cells as a method of converting solar energy to electricity and thus providing an effectively inexhaustible energy source. However, the most efficient of these devices currently utilize liquid electrolytes, which suffer from the associated problems of leakage and evaporation. Hence, significant research is currently focused on the development of solid state alternatives. Here we report a new class of solid state electrolyte for these devices, organic ionic plastic crystal electrolytes, that allow relatively rapid diffusion of the redox couple through the matrix, which is critical to the cell performance. A range of different organic ionic plastic crystal materials, utilizing different cation and anion structures, have been investigated and the conductivities, diffusion rates and photovoltaic performance of the electrolytes are reported. The best material, utilizing the dicyanamide anion, achieves efficiencies of more than 5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, multimodal nanostructured titanium was engineered using severe plastic deformation. The multimodal structured titanium exhibits an ultrahigh strength of over 940 MPa and a large failure elongation of 24%. The ultrahigh strength is mainly derived from the nanostructured structures; whilst the exceptional ductility originates from the large fraction of high angle grain boundaries, micro-scale structures, and the non-equilibrium grain boundary configuration. It is worth noting that apart from dislocation slip processes, the formation of deformation twins reduced the effective slip distance and increased the strain hardening capacity via the Hall-Petch mechanism, leading to high ductility of the multimodal structured titanium.