52 resultados para Ecology Evolution and Organismal Biology


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between body size and metabolic rate is a crucial issue in organismal biology and evolution. There has been considerable debate over whether the scaling exponent of the relationship is 0.75 (Kleiber’s Law) or 0.67. Here we show that determination of this exponent for mammals depends on both the evolutionary tree and the regression model used in the comparative analysis. For example, more recent molecular-based phylogenies tend to support a 0.67 exponent, whereas older phylogenies, mostly based on morphological data, suggest a 0.75 exponent. However, molecular phylogenies yield more variable results than morphological phylogenies and thus are not currently helping to resolve the issue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natal dispersal is an important life history trait driving variation in individual fitness, and therefore, a proper understanding of the factors underlying dispersal behaviour is critical to many fields including population dynamics, behavioural ecology and conservation biology. However, individual dispersal patterns remain difficult to quantify despite many years of research using direct and indirect methods. Here, we quantify dispersal in a single intensively studied population of the cooperatively breeding chestnut-crowned babbler (Pomatostomus ruficeps) using genetic networks created from the combination of pairwise relatedness data and social networking methods and compare this to dispersal estimates from re-sighting data. This novel approach not only identifies movements between social groups within our study sites but also provides an estimation of immigration rates of individuals originating outside the study site. Both genetic and re-sighting data indicated that dispersal was strongly female biased, but the magnitude of dispersal estimates was much greater using genetic data. This suggests that many previous studies relying on mark–recapture data may have significantly underestimated dispersal. An analysis of spatial genetic structure within the sampled population also supports the idea that females are more dispersive, with females having no structure beyond the bounds of their own social group, while male genetic structure expands for 750 m from their social group. Although the genetic network approach we have used is an excellent tool for visualizing the social and genetic microstructure of social animals and identifying dispersers, our results also indicate the importance of applying them in parallel with behavioural and life history data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Exposure of fish to stressors can elicit biochemical and organismal changes at multiple levels of biological organization collectively known as stress responses. The organismal (plasma glucose and cortisol levels) and cellular (hepatic hsp70) stress responses in fish have been studied in several species, but little is known about sex-related differences in these responses. In this study, we exposed sexually immature juvenile chinook salmon (Oncorhynchus tshawytscha) to bleached kraft mill effluent (BKME: 0%, 1%, and 10% v/v) for 30 days and then measured components of their organismal and cellular stress responses. Males exposed to 1% BKME had higher levels of plasma glucose than females. Plasma cortisol levels were unaffected in females exposed to BKME, but males exposed to 10% BKME had significantly higher levels of plasma cortisol relative to non-exposed males. While exposure to BKME did not affect hsp70 levels in males, females exposed to 1% BKME had higher levels of hsp70 relative to non-exposed and 10% BKME groups. Within any given treatment, females had higher levels of hsp70 relative to males. This study demonstrates that sex-related differences exist in commonly used indicators of stress in fish, and points out the importance of considering the sex of the fish in stress research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While field and laboratory based studies have provided significant insights into the parental care and courtship behaviour of dendrobatoid frogs, a comprehensive assessment of their genetic mating systems and population genetic parameters has been precluded because ofthe lack of highly variable DNA markers. Here we document the development of nine novel polymorphic microsatellite markers for the dyeing poison frog Dendrobates tinct or ius (Dendrobatidae ). We found between three and 16 alleles per locus in 60 individuals (30 males, 30 females) from the field site Saut Parare, French Guiana, with an average observed heterozygosity of 0. 75. None of the loci deviated significantly from Hardy-Weinberg equilibrium or showed linkage disequilibrium. We also report successful cross-species amplification of the nine markers in two other dendrobatoid species (Allobates femora/is and Oophaga pumilio). These markers have the potential to aid in determining the genetic structure of local populations, identifying small-scale phylogenies such as parent-offspring relationships and will allow for cross-species comparisons within dendrobatoid species. Therefore, these markers can be applied to a wide range of scientific fields, such as conservation, behavioural ecology and evolutionary biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If heat generated through activity can substitute for heat required for thermoregulation, then activity in cold environments may be energetically free for endotherms. Although the possibility of activity-thermoregulatory heat substitution has been long recognized, its empirical generality and ecological implications remain unclear. We combine a review of the literature and a model of heat exchange to explore the generality of activity-thermoregulatory heat substitution, to assess the extent to which substitution is likely to vary with body size and ambient temperature, and to examine some potential macroecological implications. A majority of the 51 studies we located showed evidence of activity-thermoregulatory heat substitution (35 of 51 studies), with 28 of 32 species examined characterized by substitution in one or more study. Among studies that did detect substitution, the average magnitude of substitution was 57%, but its occurrence and extent varied taxonomically, allometrically, and with ambient temperature. Modeling of heat production and dissipation suggests that large birds and mammals, engaged in intense activity and exposed to relatively warm conditions, have more scope for substitution than do smaller endotherms engaged in less intense activity and experiencing cooler conditions. However, ambient temperature has to be less than the lower critical temperature (the lower bound of the thermal neutral zone) for activity-thermoregulatory heat substitution to occur and this threshold is lower in large endotherms than in small endotherms. Thus, in nature, substitution is most likely to be observed in intermediate-sized birds and mammals experiencing intermediate ambient temperatures. Activity-thermoregulatory heat substitution may be an important determinant of the activity patterns and metabolic ecology of endotherms. For example, a pattern of widely varying field metabolic rates (FMR) at low latitudes that converges to higher and less variable FMR at high latitudes has been interpreted as suggesting that warm environments at low latitudes allow a greater variety of feasible metabolic niches than do cool, high-latitude environments. However, activity-thermoregulatory heat substitution will generate this pattern of latitudinal FMR variation even if endotherms from cold and warm climates are metabolically and behaviorally identical, because the metabolic rates of resting and active animals are more similar in cold than in warm environments. Activity-thermoregulatory heat substitution is an understudied aspect of endotherm thermal biology that is apt to be a major influence on the physiological, behavioral and ecological responses of free-ranging endotherms to variation in temperature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past 3 decades, the status of sea turtles and the need for their protection to aid population recovery have increasingly captured the interest of government agencies, non-governmental organisations (NGOs) and the general public worldwide. This interest has been matched by increased research attention, focusing on a wide variety of topics relating to sea turtle biology and ecology, together with the interrelations of sea turtles with the physical and natural environments. Although sea turtles have been better studied than most other marine fauna, management actions and their evaluation are often hindered by the lack of data on turtle biology, human–turtle interactions, turtle population status and threats. In an effort to inform effective sea turtle conservation a list of priority research questions was assembled based on the opinions of 35 sea turtle researchers from 13 nations working in fields related to turtle biology and/or conservation. The combined experience of the contributing researchers spanned the globe as well as many relevant disciplines involved in conservation research. An initial list of more than 200 questions gathered from respondents was condensed into 20 metaquestions and classified under 5 categories: reproductive biology, biogeography, population ecology, threats and conservation strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The world in color presents a dazzling dimension of phenotypic variation. Biological interest in this variation has burgeoned, due to both increased means for quantifying spectral information and heightened appreciation for how animals view the world differently than humans. Effective study of color traits is challenged by how to best quantify visual perception in nonhuman species. This requires consideration of at least visual physiology but ultimately also the neural processes underlying perception. Our knowledge of color perception is founded largely on the principles gained from human psychophysics that have proven generalizable based on comparative studies in select animal models. Appreciation of these principles, their empirical foundation, and the reasonable limits to their applicability is crucial to reaching informed conclusions in color research. In this article, we seek a common intellectual basis for the study of color in nature. We first discuss the key perceptual principles, namely, retinal photoreception, sensory channels, opponent processing, color constancy, and receptor noise. We then draw on this basis to inform an analytical framework driven by the research question in relation to identifiable viewers and visual tasks of interest. Consideration of the limits to perceptual inference guides two primary decisions: first, whether a sensory-based approach is necessary and justified and, second, whether the visual task refers to perceptual distance or discriminability. We outline informed approaches in each situation and discuss key challenges for future progress, focusing particularly on how animals perceive color. Given that animal behavior serves as both the basic unit of psychophysics and the ultimate driver of color ecology/evolution, behavioral data are critical to reconciling knowledge across the schools of color research.