79 resultados para Conductive wires


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The demands of multifunctional scaffolds have exceeded the passive biocompatible properties previously considered sufficient for tissue engineering. Herein, a novel and facile method used to fabricate a core-shell structure consisting of a conducting fiber core and an electrospun fiber shell is presented. This multifunctional structure simultaneously provides the high conductivity of conducting polymers as well as the enhanced interactions between cells and the sub-micron topographical environments provided by highly aligned cytocompatible electrospun fibers. Unlimited lengths of PEDOT:PSS-Chitosan-PLGA fibers loaded with an antibiotic drug, ciprofloxacin hydrochloride, were produced using this method. The fibers provide modulated drug release with excellent mechanical properties, electrochemical performance and cytocompatibility, which hold great promise for the application of conductive electrospun scaffolds in regenerative medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new liquid-crystalline ion gel exhibits unprecedented properties: conductivity up to 8 mS cm(-1) , thermal stability to 300 °C, and electrochemical window to 6.1 V, as well as adjustable transport anisotropy (up to 3.5×) and elastic modulus (0.03-3 GPa). The combination of ionic liquid and magnetically oriented rigid-rod polyanion provides widely tunable properties for use in diverse electrochemical devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Inter-bonded three-dimensional fibrous scaffolds were fabricated using a template-aided melt bonding method. A high-throughput bioreactor was developed for dynamic cell culture of Myoblasts. The scaffolds after surface modification with a conducting polymer, polypyrrole, showed greatly enhanced cell viability, proliferation and differentiation especially under an electrical stimulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conducting polymer-coated textiles possess a wide range of electrical properties. The surface resistivity is influenced by concentrations of the reactants, the thickness of the coating, the nature of the substrate surface, the extent of penetration of the polymer into the textile structure, and the strength of the binding of the coating to the textile surface. Low resistivity in fabric results from highly doped thicker coatings that penetrate well into the textile structure, thus enabling good electrical contact between fibers. Microwave studies showed that conductive textiles are not highly effective as electromagnetic shielding materials owing to their medium-level conductivity and therefore large skin depth. Combined with the fact that coatings are around 1. ?m thick, they cannot act as effective reflective barriers to electromagnetic radiation. However, because they are highly absorptive in the microwave region, absorbing materials can be designed in conjunction with conductive textiles. Study of Fourier transform-infrared spectra of aged polypyrrole films has shown an increase in intensity of an ?,?-unsaturated conjugated carbonyl peak that may be linked to the increase in resistance but cannot be the only factor, because the rate of electrical decay was influenced by several factors such as temperature, the type and concentration of the dopant, and the aging time, all of which signify a complex mechanism of degradation of conductivity. Degradation is a major concern for conductive textile systems that needs to be characterized before considering these materials for potential applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of pyrrole, anthraquinone-2-sulphonic acid (AQSA) and iron(III) chloride (FeCl3) concentrations, reaction time and temperature on the electrical conductivity of polypyrrole (PPy) - coated poly(ethylene terephthalate) (PET) fabrics were investigated. With an increase in both the AQSA and FeCl3 concentrations, resistivity decreased to a point beyond which higher concentrations led to increased surface resistivity. Erosion of the polymer coating, in dynamic synthesis from continual abrasion, manifested as an exponential increase in the resistance of the coated textile substrate. This was not encountered in static synthesis conditions. Temperature affected the degree of surface and bulk polymerisation. The effect of polymerisation temperature on conductivity was negligible. Conductive polymer coating on textiles through chemical polymerisation enabled a smooth coherent film to encase individual fibres, which did not affect the tactile properties of the host substrate. The optimum FeCl3/pyrrole and AQSA FeCl3/pyrrole molar ratios were found to be 2.22 and 0.40 respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat generation in fabrics coated with the conductive polymer polypyrrole was investigated. The PET fabrics were coated by chemical synthesis using four different oxidizing agent–dopant combinations. The samples from the four different dopant systems all show an increase in temperature when a fixed voltage is applied to the fabric. The antraquinone-2-sulfonic acid (AQSA) sodium salt doped polypyrrole coating was the most effective in heat generation whereas the sodium perchlorate dopant system was the least effective. The power density per unit area achieved in polypyrrole coated polyester–Lycra® fabric with 0.027 mol/l of AQSA acting as dopant was 430 W/m2. The power density per unit area achieved for the sodium perchlorate system, using the same synthesis conditions, was 55 W/m2.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conductive textiles with specific properties can be produced by the chemical polymerisation of a range of 3-alkylpyrroles in the presence of textiles. The morphologies of these coatings are altered from the traditional conductive coatings. Comparison using a SEM reveals substantial differences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heating effects in polypyrrole-coated polyethyleneterephthalate (PET)-Lycra® fabrics were studied. Chemical synthesis was employed to coat the PET fabrics by polypyrrole using ferric chloride as oxidant and antraquinone- 2-sulfonic acid (AQSA) and naphthalene sulfonic acid (NSA) as dopants. The coated fabrics exhibited reasonable electrical stability, possessed high electrical conductivity, and were effective in heat generation. Surface resistance of polypyrrole-coated fabrics ranged from approximately 150 to 500 /square. Different connections between conductive fabrics and the power source were examined. When subjected to a constant voltage of 24 V, the current transmitted through the fabric decreased about 10% in 72 h. An increase in resistance of conductive fabrics subjected to constant voltage was observed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is supposed that there should be a thermal electric effect if a dc current is applied across two dissimilar conducting polymers, similar to so called “Peltier effect” in metals or semiconductors. However, this hypothesis has not been tested on conducting polymers and using these materials to make cooling fabrics has never been attempted before. Polypyrrole coated fabrics were used to test the hypothesis in this preliminary study. Seebeck and the Peltier effects were proven to exist. However, thermoelectricity effect between two conducting polymer coated fabric samples was only about 10 μV/°C. Cooling effect by conductive polymer powder was achieved but performance was unsteady due to electrical degradation of the conducting polymer. Nevertheless, the concept was demonstrated and the development of a cooling fabric is possible.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wool and alpaca fibers were coated with polypyrrole by vapor-phase polymerisation method. The changes in frictional and tensile properties of the single fibers upon coating with the conductive polymer are presented. Coating a thin layer of polypyrrole on the alpaca and wool fibers results in a significant reduction in the fiber coefficient of friction, as the conducting polymer layer smooths the protruding edges of the fiber scales. It also reduces the directional friction effect of the fibers. Depending on the type of fiber, the coating may slightly enhance the tensile properties of the coated fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Soluble conducting poly(3-decanylpyrrole) was directly applied to textiles as a nanoparticle emulsion, using a variety of techniques including hand-brushing, dipping and spray painting. These coatings were compared to those formed by chemical polymerization of 3-decanylpyrrole on the surface of the textile by solution, using vapor and spray polymerization methods. The coating formed using chemical polymerization methods had lower surface resistivity than that formed by direct application of a soluble polymer.

It was observed that applied coatings of poly(3-decanylpyrrole) showed a smoother surface morphology with a more even dispersion compared to those formed by chemical methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The dielectric characteristics of conducting polymer-coated textiles in the frequency range 1–18 GHz were investigated using a non-contact, non-destructive free space technique. Polypyrrole coatings were applied by solution polymerization on fabric substrates using a range of concentrations of para-toluene-2-sulfonic acid (pTSA) as dopant and ferric chloride as oxidant. The conducting polymer coatings exhibited dispersive permittivity behaviour with a decrease in real and imaginary components of complex permittivity as frequency increased in the range tested. Both the permittivity and the loss factor were affected by the polymerization time of the conductive coating. It was found that the total shielding efficiency of these conductive fabrics is significant at short polymerization times and increases to values exceeding 80% with longer polymerization times. The reflection contribution to electromagnetic shielding also increases with polymerization time.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In a four-step method starting from pyrrole, the synthesis of 3-iso-butylpyrrole and 3-iso-pentylpyrrole, was achieved in 45 and 44% yields, respectively. Polymerization studies of these branched alkyl pyrroles are described and the results compared with those obtained for the unbranched structural isomers n-butyl and n-pentylpyrrole. A series of conductive textiles were produced by the chemical polymerization of the iso-alkylpyrroles using both solution and vapour polymerization techniques. Fabrics coated with poly-iso-alkylpyrrole formed using the solution polymerization method had a lower surface resistance than those formed using the vapour polymerization method. These conductivity results were in direct contrast to those previously obtained for 3-n-alkylpyrroles on fabrics. A remarkable crystal-like growth on the surface of the textile fabric was observed when solution polymerization of 3-iso-pentylpyrrole was employed—reinforcing the notion that subtle changes in monomer structure can drastically affect bulk polymer properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of 3-(−)- and 3-(+)-menthyl carboxylate pyrrole was achieved in four high yielding steps, including the triisopropylsilyl (TIPS) protection of the pyrrole nitrogen, bromination of the 3-position, lithium halogen exchange followed by reaction with menthyl chloroformate, and finally de-protection. Chemical polymerization of both the TIPS protected, and non-protected, menthyl carboxylate pyrroles was performed and the resulting polymers exhibited conductivity ranging from 0.6 to 2.3 S/cm. Polymerization of the 3-menthyl-N-TIPS pyrrole on the surface of wool was achieved by using solution and mist polymerization methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the resistance change in conductive polypyrrole-coated PET fabrics under the AS 2001.4.15 – 1994 laundering test conditions. The effects of individual detergent components of a standard detergent, including auxiliary chemicals, at four different temperatures were studied. When the coated fabric was washed under the AS 2001.4.15-1994 conditions, the ECE reference detergent and pure soap flakes (sodium sterate) both decreased the conductivity of the coating at a rate exponentially proportional to the laundering temperature. Detergent types had an influence over the rate of degradation; pH conditions had a large influence on the rate of polymer deterioration with the acidic nonionic detergent giving rise to significantly improved laundering conditions. The auxiliary chemicals, sodium carbonate and sodium perborate were seen to cause large degradation of polymers during laundering. Ethylene diamine tetra acetic acid was seen to have only a slight influence on the reduction of conductivity of polymers.