39 resultados para phospholipids


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Accumulation of diacylglycerol (DG) in muscle is thought to cause insulin resistance. DG is a precursor for phospholipids, thus phospholipid synthesis could be involved in regulating muscle DG. Little is known about the interaction between phospholipid and DG in muscle; therefore, we examined whether disrupting muscle phospholipid synthesis, specifically phosphatidylethanolamine (PtdEtn), would influence muscle DG content and insulin sensitivity. Muscle PtdEtn synthesis was disrupted by deleting CTP:phosphoethanolamine cytidylyltransferase (ECT), the rate-limiting enzyme in the CDP-ethanolamine pathway, a major route for PtdEtn production. While PtdEtn was reduced in muscle-specific ECT knockout mice, intramyocellular and membrane-associated DG was markedly increased. Importantly, however, this was not associated with insulin resistance. Unexpectedly, mitochondrial biogenesis and muscle oxidative capacity were increased in muscle-specific ECT knockout mice and were accompanied by enhanced exercise performance. These findings highlight the importance of the CDP-ethanolamine pathway in regulating muscle DG content and challenge the DG-induced insulin resistance hypothesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to release ω-3 fatty acids from oils for preparing enriched ω-3 fatty acid supplements. However, use of lipases in enrichment of ω-3 fatty acids is limited due to their insufficient specificity for ω-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis of ω-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenuginosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacillus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selective retention of ω-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 13C NMR spectroscopy based position analysis of fatty acids in enzyme treated and untreated samples indicated that PLA1 preferably retained ω-3 fatty acids in oil, while saturated fatty acids were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dioleoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both the positions. The observed discrimination against ω-3 fatty acids by PLA1 appears to be due to its fatty acid selectivity rather than positional specificity. These studies suggest that PLA1 could be used as a potential enzyme for selective concentrationof ω-3 fatty acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aggregation of amyloid-beta (Aβ) peptide is the major event underlying neuronal damage in Alzheimer's disease (AD). Specific lipids and their homeostasis play important roles in this and other neurodegenerative disorders. The complex interplay between the lipids and the generation, clearance or deposition of Aβ has been intensively investigated and is reviewed in this chapter. Membrane lipids can have an important influence on the biogenesis of Aβ from its precursor protein. In particular, increased cholesterol in the plasma membrane augments Aβ generation and shows a strong positive correlation with AD progression. Furthermore, apolipoprotein E, which transports cholesterol in the cerebrospinal fluid and is known to interact with Aβ or compete with it for the lipoprotein receptor binding, significantly influences Aβ clearance in an isoform-specific manner and is the major genetic risk factor for AD. Aβ is an amphiphilic peptide that interacts with various lipids, proteins and their assemblies, which can lead to variation in Aβ aggregation in vitro and in vivo. Upon interaction with the lipid raft components, such as cholesterol, gangliosides and phospholipids, Aβ can aggregate on the cell membrane and thereby disrupt it, perhaps by forming channel-like pores. This leads to perturbed cellular calcium homeostasis, suggesting that Aβ-lipid interactions at the cell membrane probably trigger the neurotoxic cascade in AD. Here, we overview the roles of specific lipids, lipid assemblies and apolipoprotein E in Aβ processing, clearance and aggregation, and discuss the contribution of these factors to the neurotoxicity in AD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy worldwide. The detailed mechanism of signal regulation for HCC progression is still not known, and the high motility of cancer cells is known as a core property for cancer progression maintenance. Annexin A2 (ANXA2), a calcium-dependent phospholipids binding protein is highly expressed in HCC. To study the roles the excessively expressed ANXA2 during the progression of HCC, we inhibited the ANXA2 expression in SMMC-7721 cells using RNAi, followed by the analysis of cell growth, apoptosis and cell motility. To explore the relationship between the cell behaviors and its structures, the microstructure changes were observed under fluorescence microscopy, laser scanning confocal microscopy and electron microscopy. Our findings demonstrated that down-regulation of ANXA2 results in decreased the cell proliferation and motility, enhanced apoptosis, suppressed cell pseudopodia/filopodia, inhibited expression of F-actin and β-tubulin, and inhibited or depolymerized Lamin B. The cell contact inhibition was also analyzed in the paper. Take together, our results indicate that ANXA2 plays an important role to enhance the malignant behaviors of HCC cells, and the enhancement is closely based on its remodeling to cell structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Docosahexaenoic acid (DHA) is the most abundant polyunsaturated omega-3 fatty acid found in mammalian neuronal cell membranes. Although DHA is known to be important for neuronal cell survival, little is know about how DHA interacts with phospholipid bilayers. This study presents a detailed quartz crystal microbalance with dissipation monitoring (QCM-D) analysis of free DHA interactions with individual and mixed phospholipid supported lipid bilayers (SLB). DHA incorporation and subsequent changes to the SLBs viscoelastic properties were observed to be concentration-dependent, influenced by the phospholipid species, the headgroup charge, and the presence or absence of calcium ions. It was observed that 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) SLBs incorporated the greatest amount of DHA concentration, whereas the presence of phospholipids, phosphatidylserine (PS), and phosphatidylinositol (PI) in a POPC SLB significantly reduced DHA incorporation and changed the SLBs physicochemical properties. These observations are hypothesized to be due to a substitution event occurring between DHA and phospholipid species. PS domain formation in POPC/PS 8:2 SLBs was observed in the presence of calcium ions, which favored DHA incorporation to a similar level as for a POPC only SLB. The changes in SLB thickness observed with different DHA concentrations are also presented. This work contributes to an understanding of the physical changes induced in a lipid bilayer as a consequence of its exposure to different DHA concentrations (from 50 to 200 μM). The capacity of DHA to influence the physical properties of SLBs indicates the potential for dietary DHA supplementation to cause changes in cellular membranes in vivo, with subsequent physiological consequences for cell function.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

My study showed that Docosahexaenoic Acid (DHA), a major dietary omega-3 polyunsaturated fatty acid, inhibited cell death and promoted electro-physiological activity in cultured neuronal cells. The free fatty acid form was more effective than DHA-phospholipids and DHA-nanoliposomes. This study provides insights into the beneficial effects of dietary omega-3 fatty acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Gram-staining positive, non-motile, rod-shaped, catalase positive and oxidase negative bacterium, designated NCCP-1331(T), was isolated from a hot water spring soil collected from Tatta Pani, Kotli, Azad Jammu and Kashmir, Pakistan. The isolate grew at a temperature range of 18-40 °C (optimum 30 °C), pH 6.0-9.0 (optimum 7.0) and with 0-6 % NaCl (optimum 2 % NaCl (w/v)). The phylogenetic analysis based on 16S rRNA gene sequence revealed that strain NCCP-1331(T) belonged to the genus Streptomyces and is closely related to Streptomyces brevispora BK160(T) with 97.9 % nucleotide similarity, followed by Streptomyces drosdowiczii NRRL B-24297(T) with 97.8 % nucleotide similarity. The DNA-DNA relatedness values of strain NCCP-1331(T) with S. brevispora KACC 21093(T) and S. drosdowiczii CBMAI 0498(T) were 42.7 and 34.7 %, respectively. LL-DAP was detected as diagnostic amino acid along with alanine, glycine, leucine and glutamic acid. The isolate contained MK-9(H8) as the predominant menaquinone. Major polar lipids detected in NCCP-1331(T) were phosphatidylethanolamine, phosphatidylinositol and unidentified phospholipids. Major fatty acids were iso-C16: 0, summed feature 8 (18:1 ω7c/18:1 ω6c), anteiso-C15:0 and C16:0. The genomic DNA G + C content was 69.8 mol %. On the basis of phylogenetic, phenotypic and chemotaxonomic analysis, it is concluded that strain NCCP-1331(T) represents a novel species of the genus Streptomyces, for which the name Streptomyces caldifontis sp. nov. is proposed. The type strain is NCCP-1331(T) (=KCTC 39537(T) = CPCC 204147(T)).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simple method for tracing carbon fixation and lipid synthesis in microalgae was developed using a combination of solid-phase extraction (SPE) and negative ion chemical ionisation gas chromatography mass spectrometry (NCI-GC-MS). NCI-GC-MS is an extremely sensitive technique that can produce an unfragmented molecular ion making this technique particularly useful for stable isotope enrichment studies. Derivatisation of fatty acids using pentafluorobenzyl bromide (PFBBr) allows the coupling of the high separation efficiency of GC and the measurement of unfragmented molecular ions for each of the fatty acids by single quadrupole MS. The key is that isotope spectra can be measured without interference from co-eluting fatty acids or other molecules. Pre-fractionation of lipid extracts by SPE allows the measurement of13C isotope incorporation into the three main lipid classes (phospholipids, glycolipids, neutral lipids) in microalgae thus allowing the study of complex lipid biochemistry using relatively straightforward analytical technology. The high selectivity of GC is necessary as it allows the collection of mass spectra for individual fatty acids, including cis/trans isomers, of the PFB-derivatised fatty acids. The combination of solid-phase extraction and GC-MS enables the accurate determination of13C incorporation into each lipid pool. Three solvent extraction protocols that are commonly used in lipidomics were also evaluated and are described here with regard to extraction efficiencies for lipid analysis in microalgae.