41 resultados para multiplex reverse transcription-polymerase


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: HIV recombination has been estimated in vitro using a variety of approaches, and shows a high rate of template switching per reverse transcription event. In-vivo studies of recombination generally measure the accumulation of recombinant strains over time, and thus do not directly estimate a comparable template switching rate. METHOD: To examine whether the estimated in-vitro template switching rate is representative of the rate that occurs during HIV infection in vivo, we adopted a novel approach, analysing single genome sequences from early founder viruses to study the in-vivo template switching rate in the env region of HIV. RESULTS: We estimated the in-vivo per cycle template switching rate to be between 0.5 and 1.5/1000 nt, or approximately 5-14 recombination events over the length of the HIV genome. CONCLUSION: The in-vivo estimated template switching rate is close to the in-vitro estimated rate found in primary T lymphocytes but not macrophages, which is consistent with the majority of HIV infection occurring in T lymphocytes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Malaysian patent application number PCT/MY2008/000190 Australian application number : 2009203047

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RNA polymerase II (pol II) transcription termination requires co-transcriptional recognition of a functional polyadenylation signal, but the molecular mechanisms that transduce this signal to pol II remain unclear. We show that Yhh1p/Cft1p, the yeast homologue of the mammalian AAUAAA interacting protein CPSF 160, is an RNA-binding protein and provide evidence that it participates in poly(A) site recognition. Interestingly, RNA binding is mediated by a central domain composed of predicted -propeller-forming repeats, which occurs in proteins of diverse cellular functions. We also found that Yhh1p/Cft1p bound specifically to the phosphorylated C-terminal domain (CTD) of pol II in vitro and in a two-hybrid test in vivo. Furthermore, transcriptional run-on analysis demonstrated that yhh1 mutants were defective in transcription termination, suggesting that Yhh1p/Cft1p functions in the coupling of transcription and 3'-end formation. We propose that direct interactions of Yhh1p/Cft1p with both the RNA transcript and the CTD are required to communicate poly(A) site recognition to elongating pol II to initiate transcription termination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Interactions of pre-mRNA 3′end factors and the CTD of RNA polymerase II (RNAP II) are required for transcription termination and 3′end processing. Here, we demonstrate that Ssu72p is stably associated with yeast cleavage and polyadenylation factor CPF and provide evidence that it bridges the CPF subunits Pta1p and Ydh1p/Cft2p, the general transcription factor TFIIB, and RNAP II via Rpb2p. Analyses of ssu72-2 mutant cells in the absence and presence of the nuclear exosome component Rrp6p revealed defects in RNAP II transcription elongation and termination. 6-azauracil, that reduces transcription elongation rates, suppressed the ssu72-2 growth defect at 33°C. The sum of our analyses suggests a negative influence of Ssu72p on RNAP II during transcription that affects the commitment to either elongation or termination.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

 RNA polymerase II (RNAP II) transcription and pre-mRNA 3' end formation are linked through physical and functional interactions. We describe here a highly efficient yeast in vitro system that reproduces both transcription and 3' end formation in a single reaction. The system is based on simple whole-cell extracts that were supplemented with a hybrid Gal4-VP16 transcriptional activator and supercoiled plasmid DNA templates encoding G-less cassette reporters. We found that the coupling of transcription and processing in vitro enhanced pre-mRNA 3' end formation and reproduced requirements for poly(A) signals and polyadenylation factors. Unexpectedly, however, we show that in vitro transcripts lacked m⁷G-caps. Reconstitution experiments with CF IA factor assembled entirely from heterologous components suggested that the CTD interaction domain of the Pcf11 subunit was required for proper RNAP II termination but not 3' end formation. Moreover, we observed reduced termination activity associated with extracts prepared from cells carrying a mutation in the 5'-3' exonuclease Rat1 or following chemical inhibition of exonuclease activity. Thus, in vitro transcription coupled to pre-mRNA processing recapitulates hallmarks of poly(A)-dependent RNAP II termination. The in vitro transcription/processing system presented here should provide a useful tool to further define the role of factors involved in coupling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The L1 retrotransposon has significantly shaped the structure of the human genome. At least 30% of human genome sequence can be attributed to L1 reverse transcriptase activity. There are 105 copies of the human L1 retrotransposon, L1Hs, most of which are defective, although ~8–9x103 are full length. L1Hs elements transpose through an RNA intermediate and transcription is thought to be the rate limiting step in retrotransposition. Because transcription of retrotransposons in a variety of organisms has been shown to respond to environmental stimuli, we investigated the influence of various agents on transcription from two different L1Hs promoters. The activity of the L1Hs promoters was analyzed by transfecting L1Hs-expressing cell lines with plasmids containing the L1Hs promoters fused to the LacZ reporter gene and monitoring expression with a ß-galactosidase assay. Small increases in ß-galactosidase activity were observed with both L1Hs promoters after treatment with serum, testosterone, dihydrotestosterone and organochloride pesticides, indicating that these agents can influence L1Hs transcription.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Retrotransposons have clearly molded the structure of the human genome. The reverse transcriptase coded for by long interspersed nuclear elements (LINEs) accounts for 35% of the human genome, with 8–9 x 105 copies of the most common human LINE element, L1Hs. Retrotransposons cycle through an RNA intermediate with transcription as the rate limiting step. Because various retrotransposons have been demonstrated to be induced by environmental stimuli, we investigated the response of the L1Hs promoter to various agents. L1Hs promoter activity was analyzed by transfecting an L1Hs-expressing cell line with plasmids containing one of two L1Hs promoters fused to the LacZ reporter gene. L1Hs promoter activity was then monitored with a ß-galactosidase assay. Treatment with UV light and heat shock resulted in a small increase in ß-galactosidase activity from one promoter, while treatment with tetradecanoylphorbol 13-acetate resulted in small increases in ß-galactosidase activity from both promoters. No increase in ß-galactosidase activity was observed after exposure to X-rays or hydrogen peroxide.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pcf11p, an essential subunit of the yeast cleavage factor IA, is required for pre-mRNA 3' end processing, binds to the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (RNAP II) and is involved in transcription termination. We show that the conserved CTD interaction domain (CID) of Pcf11p is essential for cell viability. Interestingly, the CTD binding and 3' end processing activities of Pcf11p can be functionally uncoupled from each other and provided by distinct Pcf11p fragments in trans. Impaired CTD binding did not affect the 3' end processing activity of Pcf11p and a deficiency of Pcf11p in 3' end processing did not prevent CTD binding. Transcriptional run-on analysis with the CYC1 gene revealed that loss of cleavage activity did not correlate with a defect in transcription termination, whereas loss of CTD binding did. We conclude that Pcf11p is a bifunctional protein and that transcript cleavage is not an obligatory step prior to RNAP II termination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All retroviruses contain two copies of genomic RNA that are linked noncovalently. The dimeric RNA of human immunodeficiency virus type 1 (HIV-1) undergoes rearrangement during virion maturation, whereby the dimeric RNA genome assumes a more stable conformation. Previously, we have shown that the packaging of the HIV-1 polymerase (Pol) proteins reverse transcriptase (RT) and integrase (IN) is essential for the generation of the mature RNA dimer conformation. Analysis of HIV-1 mutants that are defective in processing of Pol showed that these mutant virions contained altered dimeric RNA conformation, indicating that the mature RNA dimer conformation in HIV-1 requires the correct proteolytic processing of Pol. The HIV-1 Pol proteins are multimeric in their mature enzymatically active forms; RT forms a heterodimer, and IN appears to form a homotetramer. Using RT and IN multimerization defective mutants, we have found that dimeric RNA from these mutant virions has the same stability and conformation as wild-type RNA dimers, showing that the mature enzymatically active RT and IN proteins are dispensable for the generation of mature RNA dimer conformation. This also indicated that formation of the mature RNA dimer structure occurs prior to RT or IN maturation. We have also investigated the requirement of Pol for RNA dimerization in both Mason-Pfizer monkey virus (M-PMV) and Moloney murine leukemia virus (MoMuLV) and found that in contrast to HIV-1, Pol is dispensable for RNA dimer maturation in M-PMV and MoMuLV, demonstrating that the requirement of Pol in retroviral RNA dimer maturation is not conserved among all retroviruses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific impact of mutations that abrogate human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) dimerization on virus replication is not known, as mutations shown previously to inhibit RT dimerization also impact Gag-Pol stability, resulting in pleiotropic effects on HIV-1 replication. We have previously characterized mutations at codon 401 in the HIV-1 RT tryptophan repeat motif that abrogate RT dimerization in vitro, leading to a loss in polymerase activity. The introduction of the RT dimerization-inhibiting mutations W401L and W401A into HIV-1 resulted in the formation of noninfectious viruses with reduced levels of both virion-associated and intracellular RT activity compared to the wild-type virus and the W401F mutant, which does not inhibit RT dimerization in vitro. Steady-state levels of the p66 and p51 RT subunits in viral lysates of the W401L and W401A mutants were reduced, but no significant decrease in Gag-Pol was observed compared to the wild type. In contrast, there was a decrease in processing of p66 to p51 in cell lysates for the dimerization-defective mutants compared to the wild type. The treatment of transfected cells with indinavir suggested that the HIV-1 protease contributed to the degradation of virion-associated RT subunits. These data demonstrate that mutations near the RT dimer interface that abrogate RT dimerization in vitro result in the production of replication-impaired viruses without detectable effects on Gag-Pol stability or virion incorporation. The inhibition of RT activity is most likely due to a defect in RT maturation, suggesting that RT dimerization represents a valid drug target for chemotherapeutic intervention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonnucleoside reverse transcriptase inhibitors (NNRTIs) target HIV-1 reverse transcriptase (RT) by binding to a pocket in RT that is close to, but distinct, from the DNA polymerase active site and prevent the synthesis of viral cDNA. NNRTIs, in particular, those that are potent inhibitors of RT polymerase activity, can also act as chemical enhancers of the enzyme's inter-subunit interactions. However, the consequences of this chemical enhancement effect on HIV-1 replication are not understood. Here, we show that the potent NNRTIs efavirenz, TMC120, and TMC125, but not nevirapine or delavirdine, inhibit the late stages of HIV-1 replication. These potent NNRTIs enhanced the intracellular processing of Gag and Gag-Pol polyproteins, and this was associated with a decrease in viral particle production from HIV-1-transfected cells. The increased polyprotein processing is consistent with premature activation of the HIV-1 protease by NNRTI-enhanced Gag-Pol multimerization through the embedded RT sequence. These findings support the view that Gag-Pol multimerization is an important step in viral assembly and demonstrate that regulation of Gag-Pol/Gag-Pol interactions is a novel target for small molecule inhibitors of HIV-1 production. Furthermore, these drugs can serve as useful probes to further understand processes involved in HIV-1 particle assembly and maturation.