74 resultados para in vivo models


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE: Laboratory studies have been used to identify nitric oxide as a notable mediator in neuronal death after acute brain injury. To our knowledge, this has not previously been confirmed with in vivo study in humans. Our purpose was to seek in vivo evidence for the induction of nitric oxide synthase (NOS) in human acute brain injury by using proton MR spectroscopy.

METHODS: In vitro proton MR spectra were obtained in neural extracts from 30 human cadavers, and in vivo spectra were obtained in 20 patients with acute brain injury and in a similar number of control subjects.

RESULTS: We identified a unique peak at 3.15 ppm by using in vivo proton MR spectroscopy in eight of 20 patients with acute brain injury but not in 20 healthy volunteers (P < .002). On the basis of in vitro data, we have tentatively assigned this peak to citrulline, a NOS by-product.

CONCLUSION:
To our knowledge, our findings suggest, for the first time, that excitotoxicity may occur in human acute brain injury. Confirmation with the acquisition of spectra in very early acute cerebral injury would provide a rationale for the use of neuroprotective agents in these conditions, as well as a new noninvasive method for quantification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNase MRP is a ribonucleoprotein (RNP) particle which is involved in the processing of pre-rRNA at site A3 in internal transcribed spacer 1. Although RNase MRP has been analysed functionally, the structure and composition of the particle are not well characterized. A genetic screen for mutants which are synthetically lethal (sl) with a temperature-sensitive (ts) mutation in the RNA component of RNase MRP (rrp2-1) identified an essential gene, POP3, which encodes a basic protein of 22.6 kDa predicted molecular weight. Overexpression of Pop3p fully suppresses the ts growth phenotype of the rrp2-1 allele at 34°C and gives partial suppression at 37°C. Depletion of Pop3p in vivo results in a phenotype characteristic of the loss of RNase MRP activity; A3 cleavage is inhibited, leading to under-accumulation of the short form of the 5.8S rRNA (5.8SS) and formation of an aberrant 5.8S rRNA precursor which is 5'-extended to site A2. Pop3p depletion also inhibits pre-tRNA processing; tRNA primary transcripts accumulate, as well as spliced but 5'- and 3'-unprocessed pre-tRNAs. The Pop3p depletion phenotype resembles those previously described for mutations in components of RNase MRP and RNase P (rrp2-1, rpr1-1 and pop1-1). Immunoprecipitation of epitope-tagged Pop3p co-precipitates the RNA components of both RNase MRP and RNase P. Pop3p is, therefore, a common component of both RNPs and is required for their enzymatic functions in vivo. The ubiquitous RNase P RNP, which has a single protein component in Bacteria and Archaea, requires at least two protein subunits for its function in eukaryotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe methods for obtaining a quantitative description of RNA processing at high resolution in budding yeast. As a model gene expression system, we constructed tetON (for induction studies) and tetOFF (for repression, derepression, and RNA degradation studies) yeast strains with a series of reporter genes integrated in the genome under the control of a tetO7 promoter. Reverse transcription and quantitative real-time-PCR (RT-qPCR) methods were adapted to allow the determination of mRNA abundance as the average number of copies per cell in a population. Fluorescence in situ hybridization (FISH) measurements of transcript numbers in individual cells validated the RT-qPCR approach for the average copy-number determination despite the broad distribution of transcript levels within a population of cells. In addition, RT-qPCR was used to distinguish the products of the different steps in splicing of the reporter transcripts, and methods were developed to map and quantify 3′-end cleavage and polyadenylation. This system permits pre-mRNA production, splicing, 3′-end maturation and degradation to be quantitatively monitored with unprecedented kinetic detail, suitable for mathematical modeling. Using this approach, we demonstrate that reporter transcripts are spliced prior to their 3′-end cleavage and polyadenylation, that is, cotranscriptionally.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to gain a better understanding of the metabolic fate of dietary fatty acids in rainbow trout, with a specific focus on the effect of varying total C18 PUFA level. Fish were fed a control fish oil based diet or one of five experimental fish oil deprived diets formulated with a constant 1/1 ratio of 18:3n-3/18:2n-6 and varying total C18 PUFA levels for a period of 7 weeks. The transcriptional changes of the Δ-6 desaturase and elongase enzymes in direct comparison to in vivo fatty acid bioconversion, estimated using the whole-body fatty acid balance method, were analysed. The main findings were that i) the efficiency of Δ-6 desaturase was negatively affected by C18 PUFA availability, but the total apparent in vivo enzyme activity was directly proportional to C18 PUFA substrate availability; ii) Δ-6 desaturase had a greater affinity towards n-3PUFA than n-6PUFA; iii) excessive C18 PUFA substrate availability could limit the availability of Δ-6 desaturase to act on C24 fatty acid; iv) the elimination of dietary n-3LC-PUFA (enzyme products) up-regulated the transcription rate of Δ-6 desaturase; but v) the total apparent in vivo enzyme activity was directly and positively affected by substrate availability, and not product presence/absence nor the extent of the enzyme transcription rate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urgent need to treat multi-drug resistant pathogenic microorganisms in chronically infected patients has given rise to the development of new antimicrobials from natural resources. We have tested Elaeis guineensis Jacq (Arecaceae) methanol extract against a variety of bacterial, fungal and yeast strains associated with infections. Our studies have demonstrated that E. guineensis exhibits excellent antimicrobial activity in vitro and in vivo against the bacterial and fungal strains tested. A marked inhibitory effect of the E. guineensis extracts was observed against C. albicans whereby E. guineensis extract at =, 1, or 2 times the MIC significantly inhibited C. albicans growth with a noticeable drop in optical density (OD) of the bacterial culture. This finding confirmed the anticandidal activity of the extract on C. albicans. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated C. albicans. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the yeast cells. In vivo antimicrobial activity was studied in mice that had been inoculated with C. albicans and exhibited good anticandidal activity. The authors conclude that the extract may be used as a candidate for the development of anticandidal agent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We previously used Gene Expression Signature technology to identify methazolamide (MTZ) and related compounds with insulin sensitizing activity in vitro. The effects of these compounds were investigated in diabetic db/db mice, insulin-resistant diet-induced obese (DIO) mice, and rats with streptozotocin (STZ)-induced diabetes. MTZ reduced fasting blood glucose and HbA1c levels in db/db mice, improved glucose tolerance in DIO mice, and enhanced the glucose-lowering effects of exogenous insulin administration in rats with STZ-induced diabetes. Hyperinsulinemic-euglycemic clamps in DIO mice revealed that MTZ increased glucose infusion rate and suppressed endogenous glucose production. Whole-body or cellular oxygen consumption rate was not altered, suggesting MTZ may inhibit glucose production by different mechanism(s) to metformin. In support of this, MTZ enhanced the glucose-lowering effects of metformin in db/db mice. MTZ is known to be a carbonic anhydrase inhibitor (CAI); however, CAIs acetazolamide, ethoxyzolamide, dichlorphenamide, chlorthalidone, and furosemide were not effective in vivo. Our results demonstrate that MTZ acts as an insulin sensitizer that suppresses hepatic glucose production in vivo. The antidiabetic effect of MTZ does not appear to be a function of its known activity as a CAI. The additive glucose-lowering effect of MTZ together with metformin highlights the potential utility for the management of type 2 diabetes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of human immunodeficiency virus type 1 (HIV-1) infection on the ability of human monocytes/macrophages to phagocytose Mycobacterium avium complex (MAC) in vivo and in vitro and the effect of granulocyte-macrophage colony-stimulating factor (GM-CSF) on this function were investigated. By use of a flow cytometric assay to quantify phagocytosis, HIV-1 infection was found to impair the ability of monocyte-derived macrophages to phagocytose MAC in vitro, whereas GM-CSF significantly improved this defect. Phagocytosis was not altered by exposure to a mutant form of GM-CSF (E21R) binding only to the α chain of the GM-CSF receptor, suggesting that signaling by GM-CSF that leads to augmentation of phagocytosis is via the β chain of the receptor. In a patient with AIDS and disseminated multidrug-resistant MAC infection, GM-CSF treatment improved phagocytosis of MAC by peripheral blood monocytes and reduced bacteremia. These results imply that GM-CSF therapy may be useful in restoring antimycobacterial function by human monocytes/macrophages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fabrication of tissue engineering scaffolds is a well-established field that has gained recent prominence for the in vivo repair of a variety of tissue types. Recently, increasing levels of sophistication have been engineered into adjuvant scaffolds facilitating the concomitant presentation of a variety of stimuli (both physical and biochemical) to create a range of favourable cellular microenvironments. It is here that self-assembling peptide scaffolds have shown considerable promise as functional biomaterials, as they are not only formed from peptides that are physiologically relevant, but through molecular recognition can offer synergy between the presentation of biochemical and physio-chemical cues. This is achieved through the utilisation of a unique, highly ordered, nano- to microscale 3-D morphology to deliver mechanical and topographical properties to improve, augment or replace physiological function. Here, we will review the structures and forces underpinning the formation of self-assembling scaffolds, and their application in vivo for a variety of tissue types.