62 resultados para grain boundary mobility


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes tensile properties of a peak-aged Mg-4Y·3RE alloy at room temperature to 823 K with 10-5 - 10-1 s-1. The Mg alloy exhibited high strength (> 250 MPa) at room temperature to 473 K. However. the strength rapidly decreased at 573 K. It is suggested that a large decrease in strength at 573 K is attributed to grain boundary sliding. Also, elongation increased rapidly at 723 - 823 K. This is likely to arise from the relatively high strain rate sensitivity of about 0.3 due to the glide-controlled dislocation creep.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work focuses on the deformation behavior of an ultra-fine grained Al-Mg-Si alloy processed by equal channel angular pressing over a wide range of temperatures and strain rates. The effect of temperature and strain rate on the homogeneity of plastic deformation, the evolution of microstructure, the strain rate sensitivity and the underlying deformation mechanisms are investigated. It is demonstrated that the localization of plastic deformation at the micro scale is triggered by grain boundary sliding due to grain boundary sliding due to grain boundary diffusion. The contributions of different deformation mechanisms during the plastic deformation of the material are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A strongly textured sheet of magnesium alloy AZ31 has been subjected to tensile testing at temperatures between ambient and 300°C. Structures have been examined by optical and transmission electron microscopy and also by atomic force microscopy to quantify surface displacements seen at grain boundaries. Plastic anisotropy varies strongly with test temperature as was observed previously by Agnew and Duygulu. The present findings do not support the view that crystallographic <c + a> becomes a major contributor to deformation at higher temperatures. Rather, the material behaviour reflects an increasing contribution from grain boundary sliding despite the relatively high strain rate (I 0-3 s-1) used in the mechanical tests.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is shown that wrought magnesium alloys display a number of significant types of deformation inhomogeneities. These are influenced by the variation in the ease of basal slip amongst grains, micro-textures, shear banding, twinning and grain boundary sliding. Key features of each of these effects are examined and their engineering consequences and challenges are identified.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The lithium fast-ion conductor, Li1+xAlxTi2−x(PO4)3 (LATP) has been modified via changes in stoichiometry during the processing steps. The resultant changes have been followed using 27Al MAS NMR, X-ray powder diffraction and impedance spectroscopy. The most important changes were those of the form Li1.3+4yAl0.3Ti1.7−y(PO4)3. It was possible to remove the AlPO4 phase (both tridymite and berlinite polymorphs), as monitored by X-ray diffractograms and 27Al NMR spectra. Consequently, these changes appear to result in increased grain boundary conductivity of the LATP material.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lithium ion conducting ceramics based on the lithium aluminium titanium phosphate (LATP) NASICON structure have been prepared with various substitutions of the phosphorous. The effect of the processing method has been shown to be the key factor in determining the conductivity, both bulk and grain boundary, as well as the conductivity trends observed as a function of substitution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ionic liquids (ILs) based on trihexyltetradecylphosphonium coupled with either diphenylphosphate or bis(trifluoromethanesulfonyl)amide have been shown to react with magnesium alloy surfaces, leading to the formation a surface film that can improve the corrosion resistance of the alloy. The morphology and microstructure of the magnesium surface seems critical in determining the nature of the interphase, with grain boundary phases and intermetallics within the grain, rich in zirconium and zinc, showing almost no interaction with the IL and thereby resulting in a heterogeneous surface film. This has been explained, on the basis of solid-state NMR evidence, as being due to the extremely low reactivity of the native oxide films on the intermetallics (ZrO2 and ZnO) with the IL as compared with the magnesium-rich matrix where a magnesium hydroxide and/or carbonate inorganic surface is likely. Solid-state NMR characterization of the ZE41 alloy surface treated with the IL based on (Tf)2N− indicates that this anion reacts to form a metal fluoride rich surface in addition to an organic component. The diphenylphosphate anion also seems to undergo an additional chemical process on the metal surface, indicating that film formation on the metal is not a simple chemical interaction between the components of the IL and the substrate but may involve electrochemical processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Magnesium alloy ZE41, used extensively in the aerospace industry, possesses excellent mechanical properties albeit poor corrosion resistance. This paper investigates the mechanism of corrosion and the interaction between the grain boundary intermetallic phases, the Zr-rich regions within the grains and the bulk Mg-rich matrix. The results of optical and scanning electron microscopy (SEM) together with energy-dispersive X-ray (EDX) and atomic force microscopy (AFM) potential map measurements have shown the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment, indicating that the Zr-rich regions play a distinct role in the early stages of corrosion in this alloy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Substructure development in an austenitic Ni-30%Fe model alloy was investigated within a dynamic recrystallization (DRX) regime. The substructure characteristics of the deformed matrix and DRX grains were markedly different regardless of the grain size and orientation. The former largely displayed 'organized', banded subgrain arrangements with alternating misorientations, resulting from a limited number of active slip systems. In contrast, the substructure of DRX grains was generally more 'random' and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, suggesting multiple slip. The proposed mechanism of the unique substructure development within DRX grains suggests that the DRX nuclei, forming along pre-existing grain boundaries and triple points, essentially represent grain boundary regions, which experience multiple slip to preserve the compatibility with neighbouring deformed grains. This results in the formation of a complex cell/subgrain structure, which progressively extends as the grain boundary regions expand outwards during DRX growth.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The texture and substructure development during post-dynamic annealing of an austenitic Ni-30%Fe model alloy after complete dynamic recrystallization was investigated using electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). A novel mechanism of metadynamic softening is proposed based on the experimental investigation of the grain structure, crystallographic texture and dislocation substructure evolution. The initial softening stage involved rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The subboundaries within DRX grains progressively disintegrated through dislocation climb and dislocation annihilation, which ultimately led to the formation of dislocation-free grains, while the grain boundary migration gradually became slower. As a result, the DRX texture was largely preserved throughout the annealing process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This data looks at the effect of grain boundary movement on the characteristics of substructure development within the DRX regime. Different thermo-mechanical processing routes were employed to produce a range of DRX grain sizes at a given deformation temperature. The development of dislocation substructure was investigated using electron back-scattered diffraction (EBSD) in conjunction with transmission electron microscopy (TEM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The organic ionic plastic crystal material N,N-dimethyl pyrrolidinium tetrafluoroborate ([C1mpyr][BF4]) has been mixed with LiBF4 from 0 to 8 wt% and shown to exhibit enhanced ionic conductivity, especially in the higher temperature plastic crystal phases (phases II and I). The materials retain their solid state well above 100 °C with the melt not being observed up to 300 °C. Interestingly the conductivity enhancement is highest with the lowest level of LiBF4 addition in phase II, but then the order of enhancement is reversed in phase I. In all cases, a conductivity drop is observed at the II → I phase transition (105 °C) which is associated with increased order in the pure matrix, as previously reported, although the conductivity drop is least for the highest LiBF4 amount (8 wt%). The 8 wt% sample displays different conductivity behaviours compared to the lower LiBF4 concentrations, with a sharp increase above 50 °C, which is apparently not related to the formation of an amorphous phase, based on XRD data up to 120 °C. Symmetric cells, Li/OIPC/Li, were prepared and cycled at 50 °C and showed evidence of significant preconditioning with continued cycling, leading to a lower over-potential and a concomitant decrease in the cell resistivity as measured by EIS. An SEM investigation of the Li/OIPC interfaces before and after cycling suggested significant grain refinement was responsible for the decrease in cell resistance upon cycling, possibly as a result of an increased grain boundary phase.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This body of data is the result of an investigation into the effect of grain boundary movement on the characteristics of substructure development in an austenitic Ni-30%Fe model alloy within the DRX regime. Different thermo-mechanical processing routes were employed to produce a range of DRX grain sizes at a given deformation temperature. The development of dislocation substructure was investigated using electron back-scattered diffraction (EBSD) in conjunction with transmission electron microscopy (TEM).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper investigates the effect of heat treatment upon the corrosion morphology and mechanism of ZE41 alloy. The results of optical and scanning electron microscopy (SEM) together with potentiodynamic polarisation reveal the importance of the microstructure in the initiation and propagation of corrosion in an aqueous environment. The corrosion of the heat-treated alloy is significantly altered due to changes in the microstructure, specifically the Zr-rich regions and the grain boundary T-phase.