199 resultados para fatty acid oxidation disorders


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monounsaturated fatty acids (MUFA)-rich and n-6 polyunsaturated fatty acid (n-6 PUFA)-rich vegetable oils are increasingly used as fish oil replacers for aquafeed formulation. The present study investigated the fatty acid metabolism in juvenile European sea bass (Dicentrarchus labrax, 38.4 g) fed diets containing fish oil (FO, as the control treatment) or two different vegetable oils (the MUFA-rich canola/rapeseed oil, CO, and the n-6 PUFA-rich cottonseed oil, CSO) tested individually or as a 50/50 blend (CO/CSO). The whole-body fatty acid balance method was used to deduce the apparent in vivo fatty acid metabolism. No effect on growth performance and feed utilization was recorded. However, it should be noted that the fish meal content of the experimental diets was relatively high, and thus the requirement for n-3 long-chain polyunsaturated fatty acid (n-3 LC-PUFA) may have likely been fulfilled even if dietary fish oil was fully replaced by vegetable oils. Overall, relatively little apparent in vivo fatty acid bioconversion was recorded, whilst the apparent in vivo ?-oxidation of dietary fatty acid was largely affected by the dietary lipid source, with higher rate of ?-oxidation for those fatty acids which were provided in dietary surplus. The deposition of 20:5n-3 and 22:6n-3, as % of the dietary intake, was greatest for the fish fed on the CSO diet. It has been shown that European sea bass seems to be able to efficiently use n-6 PUFA for energy substrate, and this may help in minimizing the ?-oxidation of the health benefiting n-3 LC-PUFA and thus increase their deposition into fish tissues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Autism Spectrum Disorder (ASD) has been associated with essential fatty acid (EFA) deficiencies, with some researchers theorising that dysregulation of phospholipid metabolism may form part of the biological basis for ASD. This pilot study compared observable signs of fatty acid status of 19 children with an ASD diagnosis to 23 of their typically developing siblings. A pregnancy, birth and breastfeeding history was also obtained from their parents, which included a measure of infant intake of fatty acid rich colostrum immediately post-partum. When considered within their family group, those infants not breastfed (with colostrum) within the first hour of life and who had a history of fatty acid deficiency symptoms were more likely to have an ASD diagnosis. Other variables such as formula use, duration of breastfeeding, gestational age and Apgar scores were not associated with group membership. The results of this study are consistent with previous research showing a relationship between fatty acid metabolism, breastfeeding and ASD such that early infant feeding practices and the influence this has on the fatty acid metabolism of the child may be a risk factor for ASD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the relationship between erythrocyte membrane fatty acid (FA) levels and the severity of symptoms of individuals at ultra-high risk (UHR) for psychosis. Subjects of the present study consisted of 80 neuroleptic-naïve UHR patients. Partial correlation coefficients were calculated between baseline erythrocyte membrane FA levels, measured by gas chromatography, and scores on the Positive and Negative Syndrome Scale (PANSS), Global Assessment of Functioning Scale, and Montgomery-Asberg Depression Rating Scale (MADRS) after controlling for age, sex, smoking and cannabis use. Subjects were divided into three groups according to the predominance of positive or negative symptoms based on PANSS subscale scores; membrane FA levels in the three groups were then compared. More severe negative symptoms measured by PANSS were negatively correlated with two saturated FAs (myristic and margaric acids), one ω-9 monounsaturated FA (MUFA; nervonic acid), and one ω-3 polyunsaturated FA (PUFA; docosapentaenoic acid), and were positively correlated with two ω-9 MUFAs (eicosenoic and erucic acids) and two ω-6 PUFAs (γ-linolenic and docosadienoic acids). More severe positive symptoms measured by PANSS were correlated only with nervonic acid. No associations were observed between FAs and MADRS scores. In subjects with predominant negative symptoms, the sum of the ω-9 MUFAs and the ω-6:ω-3 FA ratio were both significantly higher than in those with predominant positive symptoms, whereas the sum of ω-3 PUFAs was significantly lower. In conclusion, abnormalities in FA metabolism may contribute to the neurobiology of psychopathology in UHR individuals. In particular, membrane FA alterations may play a role in negative symptoms, which are primary psychopathological manifestations of schizophrenia-related disability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For many fish species, dietary fish oil (FO) has been substituted with other oils such as poultry oil (PO) without affecting growth performance. However, in barramundi, the mechanisms by which fatty acid metabolism is regulated are poorly understood, and the effects of FO substitution are unknown. This study defined changes in the expression of genes controlling the metabolism of fatty acids in barramundi over a 24-h time period after a single meal. From one to 12 h after a single feeding event, the expression of fatty acid synthesis genes in the liver was upregulated, while genes involved in the β-oxidation showed minimal alteration. However, the expression of β-oxidation genes was significantly correlated with the expression of genes regulating fatty acid synthesis. In a second experiment, the changes in liver fatty acid composition and gene expression were defined after FO was substituted with PO. Liver fatty acid profile reflected the diet composition, with some subtle exceptions supporting the enrichment of certain long-chain polyunsaturated fatty acids in the liver. The fish from all experimental groups preferentially retained more docosahexaenoic acid than eicosapentaenoic acid in the liver, suggesting a bioconversion of this fatty acid to intermediate fatty acids. Replacement of FO with PO significantly regulated genes controlling both fatty acid synthesis and catabolism pathways, potentially related to a higher percentage of monounsaturated fatty acids, in the livers of fish fed these diets. The results demonstrated that diet composition significantly altered the lipid metabolism in barramundi and that there was a balance between direct dietary effects and endogenous synthetic capacity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The lipid and fatty acid digestibilities of three semi-purified, isonitrogenous (48.9–50.8% protein) and isocalorific (19.1–20.8 kJ g−1) diets, in which the lipid source was either cod liver oil (CLO), linseed oil (LO) or sunflower oil (SFO), were estimated in the Australian shortfin eel (Anguilla australis) using chromic oxide as an external marker. Apparent percent protein and energy digestibilities of the diets were not significantly (P>0.05) affected by the lipid source, but the lipid digestibility was. The percent apparent lipid digestibility was lowest in the LO diet (90.2±0.6) and highest in the CLO diet (95.6±0.2).

Not all the fatty acids present in any one diet were recovered in the faecal samples. In diets with CLO, only three saturates (out of five), five monoenes and six (out of 11) PUFAs were detected in faecal samples. With all the diets, 20:0 and 22:0, and none of the n−6 HUFA were detected in the faecal samples. The digestibility of all the fatty acids, except 18:3n−3, was lowest in the diet with LO, and significantly so (P>0.05) from the other diets.

In shortfin eel, there was a trend for the digestibility of saturated fatty acids of diets with the animal oil as the lipid source to decrease with increasing chain length, and in diets with vegetable oil to increase initially and then decrease. A somewhat comparable trend was also evident in respect of monoenes.

When the digestibility of different categories of fatty acids is considered, the digestibility of saturates, monoenes, unsaturates, n−6, PUFA, HUFA and total fatty acid digestibilities of LO diet were the lowest, and differed significantly (P<0.05) from those of the CLO and SFO diets, except in the case of n−3 fatty acids.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analysis of the fatty acid (FA) composition of blubber is a valuable tool in interpreting the diet of marine mammals. This technique is based on the principle that particular FA present in prey can be incorporated largely untransformed into predator adipose tissue stores, thereby providing biochemical signatures with which to identify prey species. Several studies of phocid seals and cetaceans have documented vertical stratification in the FA composition of blubber such that inferences about diet may vary greatly depending on the layer of the blubber that is analysed. It is not known whether blubber in otariid seals (fur seals and sea lions) also displays vertical stratification in FA composition. Furthermore, it is not known whether the FA composition of blubber is uniform in these species. In the present study, the vertical and regional variation in FA composition of blubber was investigated in seven adult female Cape fur seals (Arctocephalus pusillus pusillus). The proportion of monounsaturated fatty acids (MUFA) was greater in the outer (43.6±1.3%) than inner portion (40.9±1.2%; t20=5.59, P<0.001) whereas the proportions were greater in the inner than outer portions for saturated fatty acids (23.6±0.5% and 21.9±0.6%, respectively, t20 = 5.31, P<0.001) and polyunsaturated fatty acids (PUFA, 35.5±0.7% and 34.5±0.7%, respectively, t20 = 3.81, P < 0.001). There was an inverse relationship between MUFA and PUFA in the blubber, independent of sampling location. In addition, with the exception of the inner portion from non-lactating females, blubber from the mammary area had the highest proportions of 18:1ω9c and total MUFA, followed by blubber from the rump and neck, suggesting that the deposition and mobilisation of blubber lipids may not be uniform around the body in otariid seals. These results support the need for blubber tissue to be sampled from the same site on animals, and to the full depth of the blubber layer, to minimise variation in FA profiles that could occur if different sites and depths were sampled. Such standardisation of sampling will further aid in interpreting diet in otariid seals using the FA Signature Analysis approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Murray cod, an Australian native freshwater fish, supports a relatively small but increasing aquaculture industry in Australia. Presently, there are no dedicated commercial diets available for Murray cod; instead, nutritionally sub-standard feeds formulated for other species are commonly used. The aim of the present investigation was to assess the suitability of two plant based lipid sources, canola oil (CO) and linseed oil (LO), as alternatives to fish oil for juvenile Murray cod. Five iso-nitrogenous, iso-calorific, iso-lipidic semi-purified experimental diets were formulated with 17% lipid originating from 100% cod liver oil (FO), 100% canola oil, 100% linseed oil and 1 : 1 blends of canola and cod liver oil (CFO) and 1 : 1 blends of linseed and cod liver oil (LFO). Each of the diets was fed to apparent satiation twice daily to triplicate groups of 50 Murray cod with initial mean weights of 6.45 ± 1.59 g for 84 days at 22 °C. Final mean weight, specific growth rate and daily feed consumption were significantly higher for the FO and LFO treatments compared to the LO treatment. Feed conversion and protein efficiency ratios were not significantly different amongst treatments. Experimental diets containing vegetable oil and vegetable oil blend(s) had significantly higher concentrations of n-6 fatty acids, predominantly in the form of linoleic acid (LA), while n-3 fatty acids were present in significantly higher concentrations in LO and LFO treatments. The fatty acid composition of Murray cod fillet was reflective of the dietary lipid source. Fillet of fish fed the FO was highest in EPA (20:5n-3), ArA (20:4n-6) and DHA (22:6n-3). Fish fed the CO diet had high concentrations of oleic acid (OlA) (192.2 ± 10.5 mg g lipid− 1), while the fillet of Murray cod fed the LO diet was high in α-linolenic acid (LnA) (107.1 ± 6.7 mg g lipid− 1). The present study suggests that fish oil can be replaced by up to 100% with canola oil and by up to 50% with linseed oil in Murray cod diets with no significant effect on growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The dynamics of fatty acid composition modifications were examined in tissues of Murray cod fed diets containing fish oil (FO), canola oil (CO) and linseed oil (LO) for a 25-week period and subsequently transferred to a FO (finishing/wash-out) diet for a further 16 weeks. At the commencement of the wash-out period, following 25 weeks of vegetable oil substitution diets, the fatty acid compositions of Murray cod fillets were reflective of the respective diets. After transfer to the FO diet, differences decreased in quantity and in numerousness, resulting in a revert to the FO fatty acid composition. Changes in percentages of the fatty acids and total accumulation in the fillet could be described by exponential equations and demonstrated that major modifications occurred in the first days of the finishing period. A dilution model was tested to predict fatty acid composition. In spite of a general reliability of the model (Y=0.9234X+0.4260, R2=0.957, P<0.001, where X is the predicted percentage of fatty acid; Y the observed percentage of fatty acid), in some instances the regression comparing observed and predicted values was markedly different from the line of equity, indicating that the rate of change was higher than predicted (i.e. Y=0.4205X+1.191, R2=0.974, P<0.001, where X is the predicted percentage of α-linolenic acid; Y the observed percentage of α-linolenic acid). Ultimately, using the coefficient of distance (D), it was shown that the fatty acid composition of fish previously fed the vegetable oil diets returned to the average variability of the fillet fatty acid composition of Murray cod after 70 or 97 days (LO and CO respectively).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the present investigation was to quantify the fate of C18 and long chain polyunsaturated dietary fatty acids in the freshwater fish, Murray cod, using the in vivo, whole-body fatty acid balance method. Juvenile Murray cod were fed one of five iso-nitrogenous, iso-energetic, semipurified experimental diets in which the dietary fish oil (FO) was replaced (0, 25, 50, 75, and 100%) with a blended vegetable oil (VO), specifically formulated to match the major fatty acid classes [saturated fatty acids, monounsaturated fatty acids, n-3 polyunsaturated fatty acids (PUFA), and n-6 PUFA] of cod liver oil (FO). However, the PUFA fraction of the VO was dominated by C18 fatty acids, while C20/22 fatty acids were prevalent in the FO PUFA fraction. Generally, there was a clear reflection of the dietary fatty acid composition across each of the five treatments in the carcass, fillet, and liver. Lipid metabolism was affected by the modification of the dietary lipid source. The desaturation and elongation of C18 PUFAs increased with vegetable oil substitution, supported by the occurrence of longer and higher desaturated homologous fatty acids. However, increased elongase and desaturase activity is unlikely to fulfill the gap observed in fatty acid composition resulting from decreased highly unsaturated fatty acids intake.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n two independent experiments, the effects of dietary inclusion of canola and linseed oil were evaluated in juvenile Murray cod (Maccullochella peelii peelii, Mitchell) over a 112-day period. In each experiment, fish received one of five semi-purified diets in which the dietary fish oil was replaced with canola oil (Experiment A) or linseed oil (Experiment B) in graded increments of 25% (0–100%). Murray cod receiving the graded canola and linseed oil diets ranged in final weight from 112.7 ± 7.6 to 73.8 ± 9.9 g and 93.9 ± 3.6 to 74.6 ± 2.2 g, respectively, and exhibited a negative trend in growth as the inclusion level increased. The fatty acid composition of the fillet and liver were modified extensively to reflect the fatty acid composition of the respective diets. Levels of oleic acid (18:1 n-9) and linoleic acid (18:2 n-6) increased with each level of canola oil inclusion while levels of α-linolenic acid (18:3 n-3) increased with each level of linseed oil inclusion. The concentration of n-3 highly unsaturated fatty acids in the fillet and liver decreased as the amount of vegetable oil in the diets increased. It is shown that the replacement of fish oil with vegetable oils in low fish meal diets for Murray cod is possible to a limited extent. Moreover, this study reaffirms the suggestion for the need to conduct ingredient substitution studies for longer periods and where possible to base the conclusions on regression analysis in addition to anova.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endurance exercise transiently increases the mRNA of key regulatory proteins involved in skeletal muscle metabolism. During prolonged exercise and subsequent recovery, circulating plasma fatty acid (FA) concentrations are elevated. The present study therefore aimed to determine the sensitivity of key metabolic genes to FA exposure, assessed in vitro using L6 myocytes and secondly, to measure the expression of these same set of genes in vivo, following a single exercise bout when the post-exercise rise in plasma FA is abolished by acipimox. Initial studies using L6 myotubes demonstrated dose responsive sensitivity for both PDK4 and PGC-1α mRNA to acute FA exposure in vitro. Nine active males performed two trials consisting of 2 h exercise, followed by 2 h of recovery. In one trial, plasma FA availability was reduced by the administration of acipimox (LFA), a pharmacological inhibitor of adipose tissue lipolysis, and in the second trial a placebo was provided (CON). During the exercise bout and during recovery, the rise in plasma FA and glycerol was abolished by acipimox treatment. Following exercise the mRNA abundance of PDK4 and PGC-1α were elevated and unaffected by either acipimox or placebo. Further analysis of skeletal muscle gene expression demonstrated that the CPT I gene was suppressed in both trials, whilst UCP-3 gene was only modestly regulated by exercise alone. Acipimox ingestion did not alter the response for both CPT I and UCP-3. Thus, this study demonstrates that the normal increase in circulating concentrations of FA during the later stages of exercise and subsequent recovery is not required to induce skeletal muscle mRNA expression of several proteins involved in regulating substrate metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aim
As an evaluation of fatty acid intake measurement, our aim was to examine associations between diet and plasma phospholipid (PL) fatty acids, and whether these were modified by age, sex, country of birth, fasting status, use of cholesterol-lowering medication, body size, chronic disease and other lifestyle factors.

Methods and results
Cross-sectional analysis of plasma PL fatty acid composition and dietary fatty acid intake over 12 months from a 121-item food frequency questionnaire (FFQ) in 4439 men and women aged 40–69 years, born in Australia, Greece or Italy. Crude correlation coefficients ranged from 0.18 to 0.40; and corrected correlation coefficients from 0.38 to 0.78 for total monounsaturated, polyunsaturated, n-6, n-3 fatty acids, oleic acid, linoleic acid, EPA and DHA. Weaker associations were observed for other fatty acids. The associations did not vary significantly by fasting status, use of lipid lowering medication or alcohol intake, but for some fatty acids did vary by sex, age, body mass index, country of birth, smoking and previous heart attack or diabetes.

Conclusions
The FFQ provides useful information on intakes of mono- and polyunsaturated fatty acids. Correlations did not differ by fasting status, or use of lipid-lowering medication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: Recent reports in adult humans suggest that heart rate variability is modulated by the concentration of omega-3 polyunsaturated fatty acids (PUFA) contained in blood cell membranes. Material and methods: Hurst analysis of ECG data was conducted on 12 male adult hooded (Long-Evans) rats, representing the 3rd generation to be fed diets that were either deficient in, or supplemented with, omega-3 PUFA. ECG data were obtained from surface electrodes and 4000 beats were analyzed for each animal. Results: Dietary manipulation, despite leading to large changes in tissue omega- 3 PUFA levels, did not significantly affect the complexity of heart rate dynamics, with Hurst exponent (H) values of 0.15±0.02 and 0.12±0.03, for animals fed omega- 3 fatty acid-adequate and -deficient diets, respectively. Mean heart rate was also unaffected by the diets. A power calculation revealed that about one hundred animals per group would have been required to avoid a type II error. Conclusions: According to this model of dietary PUFA manipulation, omega-3 fatty acids are unlikely to exert a large effect on the autonomic functions that control heart rate variability. Prospective studies into the effect of omega-3 fatty acids on HRV should consider the need for large sample size as estimated by the results contained in this report.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conjugated linoleic acids (CLA) have been shown to decrease body fat content in pigs. It is possible that feeding pigs diets rich in CLA may increase carcass lipid CLA to levels that could provide health benefits when included as a part of a healthy diet. Therefore, the aim of the present study was to determine whether dietary CLA supplementation has any effect on the fatty acid composition of subcutaneous and intramuscular adipose tissue in pigs. Thirty-five female cross bred (Large White X Landrace) pigs (initial weight 57·2 kg and initial P2 back fat 11·5 mm) were used in the present study. Pigs were housed individually and randomly allocated to one of six dietary treatments (0·00, 1·25, 2·50, 5·00, 7·50 and 10·00 g CLA55 (55 g CLA isomers/100 g total fatty acids; Natural Lipids Ltd, Hovdebygda, Norway)/kg)
and fed their respective diets for 8 weeks. Twelve CLA isomers in the diet and in pig tissue lipids were separated by Agþ-HPLC. CLA was incorporated at fivefold higher levels in subcutaneous fat as compared with intramuscular fat and in a dose-dependant manner. Overall, the transfer efficiency of CLA was maximized at 5·00 g CLA55/kg. However, there was clear selectivity in the uptake or incorporation of cis,trans-9,11 isomer over the trans,cis-10,12 isomer. In general, CLA supplementation produced significant changes in skeletal muscle and adipose tissue fatty acid composition, indicating that dietary CLA had a potent affect on lipid transport and metabolism in vivo. Significant increases in myristic, palmitic and palmitoleic acids and a reduction in arachidonic acid were observed, suggesting an alteration in
activity of Δ5-, Δ6- and Δ9-desaturases in pig adipose tissue. In conclusion, feeding pigs diets supplemented with CLA increases carcass lipid CLA, but also results in changes in the fatty acid profile in pig fat that could potentially outweigh the benefits of CLA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary ω-3 polyunsaturated fatty acid (PUFA) influences the expression of a number of genes in the brain. Zinc transporter (ZnT) 3 has been identified as a putative transporter of zinc into synaptic vesicles of neurons and is found in brain areas such as hippocampus and cortex. Neuronal zinc is involved in the formation of amyloid plaques, a major characteristic of Alzheimer's disease. The present study evaluated the influence of dietary ω-3 PUFA on the expression of the ZnT3 gene in the brains of adult male Sprague-Dawley rats. The rats were raised and/or maintained on a control (CON) diet that contained ω-3 PUFA or a diet deficient (DEF) in ω-3 PUFA. ZnT3 gene expression was analyzed by using real-time PCR, free zinc in brain tissue was determined by zinquin staining, and total zinc concentrations in plasma and cerebrospinal fluid were determined by atomic absorption spectrophotometry. Compared with CON-raised animals, DEF-raised animals had increased expression of ZnT3 in the brain that was associated with an increased level of free zinc in the hippocampus. In addition, compared with CON-raised animals, DEF-raised animals had decreased plasma zinc level. No difference in cerebrospinal fluid zinc level was observed. The results suggest that overexpression of ZnT3 due to a perinatal ω-3 PUFA deficiency caused abnormal zinc metabolism in the brain. Conceivably, the influence of dietary ω-3 PUFA on brain zinc metabolism could explain the observation made in population studies that the consumption of fish is associated with a reduced risk of dementia and Alzheimer's disease.